ACM/IEEE-CS/AAAI COMPUTER SCIENCE CURRICULA (CS202X)

Amruth N Kumar
ACM Co-Chair

Rajendra K. Raj
IEEE - Computer Society Co-Chair
Steering Committee - ACM

- Monica D. Anderson, University of Alabama, USA
- Brett A. Becker, University College Dublin, Ireland
- Richard L. Blumenthal, Regis University, USA
- Michael Goldweber, Xavier University, USA
- Pankaj Jalote, IIIT Delhi, India
- Susan Reiser, University of North Carolina, USA
- Titus Winters, Google Inc., USA
Steering Committee – IEEE-CS

- Sherif G. Aly, American University in Cairo, Egypt
- Douglas Lea, SUNY Oswego, USA
- Michael Oudshoorn, High Point University, USA
- Marcelo Pias, Federal University of Rio Grande (FURG), Brazil
- Christian Servin, El Paso Community College, USA
- Qiao Xiang, Xiamen University, PRC
Steering Committee - AAAI

- Eric Eaton, University of Pennsylvania, USA
- Susan L. Epstein, Hunter College and The Graduate Center of The City University of New York, USA
Task Force Participation

Task Force = Steering Committee + KA Committees

- Africa – Middle East
 - Egypt, Qatar, South Africa
- Asia – Pacific
 - China, India, New Zealand
- Europe
 - Germany, Ireland, Italy, Poland, Spain, UK
- North America
 - USA, Canada
- South America
 - Brazil
Surveys

- Academic Survey
 - US - 212 respondents
 - Global - 191 respondents

- Industry Survey
 - 865 respondents

- Surveys, summaries posted on csed.acm.org
Vision

- Curricular Guidelines - what
 - Body of Knowledge
 - Knowledge Areas
 - Learning Outcomes
 - Models used
 - Knowledge model
 - Competency model
 - Consistency between the two
- Online version
 - Machine-readable

- Curricular Practices – why, how
 - Social
 - Professional
 - Programmatic Considerations
Body of Knowledge

- Knowledge Areas
- Illustrative Learning Outcomes
 - No CS2013 skill level, i.e., no familiarity/usage/assessment
 - Emphasis on higher level skills
 - Interdisciplinary outcomes
- Core Hours
- Competency Model
Knowledge Areas - 1

- AI - Artificial Intelligence
 (CS2013: Intelligent Systems)
- AL - Algorithms and Complexity
- AR - Architecture and Organization
- DM - Data Management
 (CS2013: Information Management)
- GIT - Graphics and Interactive Techniques
 (CS2013: Graphics and Visualization)
- HCI - Human-Computer Interaction
Knowledge Areas - 2

- MF - Mathematical Foundations
 (CS2013: Discrete Structures)
- MOD - Modeling
 (CS2013: Computational Science)
- NC - Networking and Communication
- OS - Operating Systems
- PD - Parallel and Distributed Computing
- PL - Programming Languages
Knowledge Areas - 3

- SDF - Software Development Fundamentals
- SE - Software Engineering
- SEC - Security
 (CS2013: Information Assurance and Security)
- SEP – Society, Ethics and Professionalism
 (CS2013: Social Issues and Professional Practice)
- SF - Systems Fundamentals
- SPD - Specialized Platform Development
 (CS2013: Platform-Based Development)
Version Alpha

- Posted on csed.acm.org
 - Email, form for each KA
 - Posted to 12+ SIGs, country mailing lists in May
 - Quarterly outreach
- Undergoing reviews
Core Hours

- CS2013:
 - Core Tier I
 - 165 hours
 - Core Tier II
 - 143 hours – 80% coverage adequate

- Current Plan for CS202X:
 - CS Core: what every CS graduate must know
 - KA Core: what any coverage of the Knowledge Area must include

280 hours (CC2001) → 290 (CS2008) → max 308 (CS2013) → ??
Core Hours – CS2013 vs CS202X
Competency Model

- Competency = Knowledge + Skills + Dispositions (from CC2020)
- Dispositions:
 - Cultivated behaviors desirable in the workplace
- For each KA:
 - Dispositions identified
 - Competency statements listed
Curricular Practices

- Written by recognized experts
- Peer-reviewed articles
 - Not position papers
- Program design and delivery issues
 - Social aspects
 - Professional practices
 - Programmatic considerations
Curricular Practices
- Social Aspects

- Accessibility
- Planned:
 - Ethics in CS education
 - CS 4 Good
 - Diversity of DEI
Curricular Practices
- Professional Practices

- CS education in the liberal arts context
- CS education in community colleges
- CS education in China

Planned:
- CS Education in Australasia, Latin America, India
 - Globalizing CS education
- Curricular aspects of CS as a professional discipline
- Role of professional accreditation/certification in CS
Curricular Practices
- Programmatic Considerations

- CS + X

Planned:
- Future of CS educational materials
- High impact practices in CS education
- AI in CS education
- Undergraduate research in CS
- Curricular aspects of CS as a science
- Math across CS
- Role of liberal arts in CS education
- Crosscutting themes in CS
We Invite Your Participation

- Curricular Practices (csed.acm.org)
 - Topics
 - Contributors
- Curricular Guidelines (csed.acm.org)
 - Feedback, suggestions
 - Volunteer to contribute
 - Feedback form, Email address for each Knowledge Area
- Contest on Characteristics of CS Graduates
 - contest@volunteer.acm.org