

1

Algorithmic Foundations (AL)

Preamble

Algorithms and data structures are fundamental to computer science and software engineering
since every theoretical computation and real-world program consists of algorithms that operate
on data elements possessing an underlying structure. Selecting appropriate computational
solutions to real-world problems benefits from understanding the theoretical and practical
capabilities, and limitations, of available algorithms and paradigms, including their impact on the
environment and society. Moreover, this understanding provides insight into the intrinsic nature
of computation, computational problems, and computational problem-solving as well as possible
solution techniques independent of programming language, programming paradigm, computer
hardware, or other implementation aspects.

This knowledge area focuses on the nature of algorithmic computation including the concepts
and skills required to design and analyze algorithms for solving real-world computational
problems. It complements the implementation algorithms and data structures found in the
Software Development Foundations (SDF) knowledge area. As algorithms and data structures
are essential in all advanced areas of computer science, this area provides the algorithmic
foundations that every computer science graduate is expected to know. Exposure to the breadth
of these foundational AL topics is designed to provide students with the basis for studying
additional topics in algorithmic computation in more depth and for learning advanced algorithms
across a variety of knowledge areas and disciplines.

Changes since CS 2013

This area has been renamed to better reflect its foundational scope since topics in this area
focus on the theoretical foundations of complexity and computability. They also provide the
foundational prerequisites for advanced study in computer science. Additionally, topics focused
on complexity and computability have been clearly separated into their respective knowledge
units.To reinforce the important impact of computation on society, an Algorithms and Society unit
has been added with the expectation that Societal, Ethical, and Professional (SEP) implications
be addressed in some way during every lecture hour in the AL knowledge area.

The increase of four CS core hours acknowledges the importance of this foundational area in the
computer science curriculum and returns it to the 2001 level. Despite this increase, there is a
significant overlap in hours with the Software Development Fundamentals (SDF) and
Mathematical Foundations (MSF) areas. There is also a complementary nature of the units in
this area since, for example, linear search of an array covers topics in AL-Fundamentals and can
be used to simultaneously explain AL-Complexity, e.g., O(n), and AL-Strategies, e.g. Brute-
Force.

2

The KA hours primarily reflect topics studied in a stand-alone computational theory course and
the availability of additional hours when such a course is included in the curriculum.

Core Hours

Knowledge Unit CS Core KA Core

Foundational Data Structures and Algorithms 14 6

Algorithmic Strategies 6

Complexity Analysis 6 3

Computational Models and Formal Languages 6 23

Algorithms and Society Included in SEP hours

Total 32 32

Knowledge Units

AL-Foundational: Foundational Data Structures and Algorithms

CS Core:
1. Abstract Data Types (See also: SDF-ADT, FPL-Types: 1)

a. Dictionary Operations (insert, delete, find)
b. Objects (See also: FPL-OO: 2a)

2. Arrays (See also: SDF-Fundamentals, SDF-ADT)
a. Numeric vs. Non-numeric, Character Strings
b. Single (Vector) vs. Multidimensional (Matrix)

3. Records/Structs/Tuples (See also: FPL-Types: 1)
4. Linked Lists (See also: SDF-ADT)

a. Single vs. double and Linear vs. Circular
5. Stacks (See also: SDF-ADT, AL-Models)
6. Queues and Dequeues (See also: SDF-ADT)
7. Hash Tables / Maps (See also: SDF-ADT)

a. Collision Resolution and Complexity (e.g., probing, chaining, rehash)
8. Graphs (e.g., [un]directed, [a]cyclic, [un]connected, and [un]weighted)

(See also: MSF-Discrete: 7)
a. Adjacency list vs. matrix representations

9. Trees (See also: MSF-Discrete: 7)
a. Binary, n-ary, and search trees

3

b. Balanced (e.g., AVL, Red-Black)
10. Sets (See also: MSF-Discrete 1)
11. Search Algorithms (See also: SDF-Algorithms)

a. O(n) (e.g., linear/sequential search)
b. O(log2 n) (e.g., binary search)
c. O(logb n) (e.g. depth/breadth-first tree)

12. Sorting Algorithms (e.g., stable, unstable) (See also: SDF-Algorithms)
a. O(n2) complexity (e.g., insertion, selection),
b. O(n log n) complexity (e.g., quicksort, merge, timsort)

13. Graph Algorithms
a. Shortest Path (e.g., Dijkstra’s, Floyd’s)
b. Minimal spanning tree (e.g., Prim’s, Kruskal’s)

KA Core:
1. Heaps and Priority Queues
2. Sorting Algorithms

a. O(n log n) heapsort
b. Pseudo O(n) complexity (e.g., bucket, counting, radix)

3. Graph Algorithms
a. Transitive closure (e.g., Warshall’s Algorithm)
b. Topological sort

4. Matching
a. Efficient String Matching (e.g., Boyer-Moore, Knuth-Morris-Pratt)
b. Longest common subsequence matching
c. Regular expression matching

Non Core:
5. Cryptography Algorithms (e.g., SHA-256) (See also: SE-Cryptography, MSF-Discrete: 5)
6. Parallel Algorithms (See also: PDC-Algorithms, FPL-Parallel)
7. Consensus algorithms (e.g., Blockchain) (See also: SE-Cryptography: 14)

a. Proof of work vs. proof of stake (See also: SEP-Sustainability: 3)
8. Quantum computing algorithms (See also: AR-Quantum: 6)

a. Oracle-based (e.g. Deutsch-Jozsa, Bernstein-Vazirani, Simn)
b. Superpolynomial speed-up via QFT (e.g., Shor’s algorithm)
c. Polynomial speed-up via amplitude amplification (e.g., Grover’s algorithm)

Illustrative Learning Outcomes:
CS Core:
1. For each Fundamental ADT/Data Structure in this unit:

a. Articulate its definition, properties, representation(s), and associated ADT operations,
b. Using a real-world example, explain step-by-step how the ADT operations associated

with the data structure transform it.
2. For each of the algorithmic in this unit:

a. Use a real-world example, show step-by-step how the algorithm operates.

4

3. For each of the algorithmic approach in this unit:
a. Give a prototypical example of the approach (e.g., Quicksort for Sorting)

4. Given requirements for a real-world application, create multiple design solutions using
various data structures and algorithms. Subsequently, evaluate the suitability, strengths, and
weaknesses of the selected approach for satisfying the requirements.

5. Explain how collision avoidance and collision resolution is handled in hash tables.
6. Discuss factors other than computational efficiency that influence the choice of algorithms,

such as, programming time, maintainability, and the use of application-specific patterns in the
input data.

KA Core:
7. Describe the heap property and the use of heaps as an implementation of a priority queue.
8. For each of the algorithms and algorithmic approaches in the KA core topics:

a. Give a prototypical example of the algorithm,
b. Use a real-world example, show step-by-step how the algorithm operates.

AL-Strategies: Algorithmic Strategies

CS Core:
1. Paradigms

a. Brute-Force (e.g., linear search, selection sort, traveling salesperson, knapsack)
b. Decrease-and-Conquer

i. By a Constant (e.g., insertion sort, topological sort),
ii. By a Constant Factor (e.g., binary search),

iii. By a Variable Size (e.g., Euclid’s algorithm)
c. Divide-and-Conquer (e.g., Binary Search, Quicksort, Mergesort, Strassen’s)
d. Greedy (e.g., Dijkstra’s, Kruskal’s)
e. Transform-and-Conquer

i. Instance simplification (e.g. find duplicates via list presort)
ii. Representation change (e.g., heapsort)

iii. Problem reduction (e.g., least-common-multiple, linear programming)
iv. Dynamic Programming (e.g., Floyd’s)

f. Space vs. Time Tradeoffs (e.g., hashing) (See also: AL-Fundamentals)
2. Handling Exponential Growth (e.g., heuristics, A*, branch-and-bound, backtracking)
3. Iteration vs. Recursion (e.g., factorial) (See also: MSF-Discrete: 2)

KA Core:
4. Paradiams

a. Approximation Algorithms
b. Iterative improvement (e.g., Ford-Fulkerson, Simplex)
c. Randomized/Stochastic Algorithms (e.g., Max-Cut, Balls and Bins)

Non Core:

5

5. Quantum computing (See also AL-Fundamentals: 8, AL-Models: 8)

Illustrative Learning Outcomes

CS Core:
1. For each of the paradigms in this unit

a. Articulate its definitional characteristics,
b. Give an example that demonstrates the paradigm including explaining how this

example satisfies the paradigm’s characteristics
2. For each of the algorithms in the AL-Fundamentals unit:

a. Describe the paradigm used by the algorithm and how it exemplifies this paradigm
3. Given an algorithm, describe the paradigm used by the algorithm and how it exemplifies this

paradigm
4. Give a real-world problem, determine appropriate algorithmic paradigms and algorithms from

these paradigms that address the problem including considering the tradeoffs among the
paradigms and algorithms selected.

5. Give an example of an iterative and a recursive algorithm that solves the same problem
including explaining the benefits and disadvantages of each approach.

6. Determine if a greedy approach leads to an optimal solution.
7. Explain at least one approach for addressing a computational problem whose algorithmic

solution is exponential.

AL-Complexity: Complexity

CS Core:
1. Complexity Analysis Framework

a. Best, average, and worst case performance of an algorithm
b. Empirical and Relative (Order of Growth) Measurements
c. Input Size and Primitive Operations
d. Time and Space Efficiency

2. Asymptotic complexity analysis (average and worst case bounds)
a. Big-O, Big-Omega, and Big-Theta formal notations
b. Foundational complexity classes and representative examples/problems

i. O(1) Constant (e.g., Array Access)
ii. O(log2 n) Logarithmic (e.g., Binary Search)
iii. O(n) Linear (e.g., Linear Search)
iv. O(n log2 n) Log Linear (e.g., Mergesort
v. O(n2) Quadratic (e.g., Selection Sort)
vi. O(n3) Cubic (e.g., Gaussian Elimination)
vii. O(2n) Exponential (e.g., Knapsack, SAT, TSP,

All Subsets)
viii. O(n!) Factorial (e.g., Hamiltonian Circuit, All

Permutations)
3. Empirical measurements of performance
4. Tractability and Intractability

6

a. P, NP and NP-Complete complexity classes
b. NP-Complete problems (e.g., SAT, Knapsack, TSP)
c. Reductions

5. Time and space trade-offs in algorithms.

KA Core:
6. Little-o and Little-Omega notations
7. Recursive Analysis: (e.g., recurrence relations, Master theorem, substitution)
8. Amortized Analysis
9. Turing Machine-Based Models of Complexity

a. Time complexity (See also: AL-Models)
i. P, NP, NP-C, and EXP classes
ii. Cook-Levin Theorem

b. Space Complexity
i. NSpace and PSpace
ii. Savitch’s Theorem

Illustrative Learning Outcomes

CS Core:
1. Explain what is meant by “best”, “average”, and “worst” case behavior of an algorithm..
2. State and explain the formal definitions of Big-O, Big-Omega, and Big-Theta notations and

how they are used to describe the amount of work done by an algorithm.
3. Compare and contrast each of the foundational complexity classes listed in this unit.
4. For each foundational complexity class in this unit:

a. Give an algorithm that demonstrates the associated runtime complexity.
5. For each algorithm in the AL-Fundamentals unit:

a. Give its runtime complexity class and explain why it belongs to this class.
6. Determine informally the foundational complexity class of simple algorithms.
7. Perform empirical studies to determine and validate hypotheses about the runtime complexity

of various algorithms by running algorithms on input of various sizes and comparing actual
performance to the theoretical analysis.

8. Give examples that illustrate time-space trade-offs of algorithms.
9. Explain how tree balance affects the efficiency of various binary search tree operations.
10. Explain to a non-technical audience the significance of tractable versus intractable algorithms

using an intuitive explanation of Big-O complexity.
11. Explain the significance of NP-Completeness.
12. Describe NP-Hard as a lower bound and NP as an upper bound for NP-Completeness.
13. Provide examples of NP-complete problems.

KA Core:
14. Use recurrence relations to determine the time complexity of recursively defined algorithms.
15. Solve elementary recurrence relations using some form of the Master Theorem.
16. Use Big-O notation to give upper case bounds on time/space complexity of algorithms.
17. Explain the Cook-Levin Theorem and the NP-Completeness of SAT.

7

18. Define the classes P and NP.
19. Prove that a problem is NP-Complete by reducing a classic known NP-C problem to it (e.g.,

3SAT and Clique)
20. Define the P-space class and its relation to the EXP class.

AL-Models: Computational Models and Formal Languages

CS Core:
1. Formal Automata

a. Finite State
b. Pushdown (See also: AL-Fundamentals: 5, SDF-ADT)
c. Linear Bounded
d. Turing Machine

2. Formal Languages, Grammars and Chomsky Hierarchy
 (See also: FPL-H Translation, FPL-J Syntax)

a. Regular (Type-3)
i. Regular Expressions

b. Context-Free (Type-2)
c. Context-Sensitive (Type-1)
d. Recursively Enumerable (Type-0)

3. Relations among formal automata, languages, and grammars
4. Decidability, (un)computability, and halting
5. The Church-Turing Thesis
6. Algorithmic Correctness

a. Invariants (e.g., in: iteration, recursion, tree search)

KA Core:
1. Deterministic and nondeterministic automata
2. Pumping Lemma Proofs (See also: MSF-Discrete: 3)

a. Finite State/Regular
b. Pushdown Automata/Context-Free

3. Decidability
a. Arithmetization and Diagonalization (See also: MSF-Discrete: 1)

4. Reducibility and reductions
5. Time Complexity based on Turing Machine
6. Space Complexity (e.g., PSPACE, Savitch’s Theorem)
7. Equivalent Models of Algorithmic Computation

a. Turing Machines and Variations (e.g., multi-tape, non-deterministic)
b. Lambda Calculus (See also: FPL-Functional)
c. Mu-Recursive Functions

Non Core:
8. Quantum Computation (See also: AR-Quantum)

8

a. Postulates of quantum mechanics
i. State Space
ii. State Evolution
iii. State Composition
iv. State Measurement

b. Column vector representations of Qubits
c. Matrix representations of quantum operations
d. Quantum Gates (e.g., XNOT, CNOT)

Illustrative Learning Outcomes

CS Core:
1. For each formal automata in this unit:

a. Articulate its definition comparing its characteristics with this unit’s other automata,
b. Using an example, explain step-by-step how the automata operates on input

including whether it accepts the associated input,
c. Give an example of inputs that can and cannot be accepted by the automata.

2. Given a real-world problem, design an appropriate automaton that addresses the problem.
3. Design a Regular Expression to accept a sentence from a Regular language.
4. Explain the difference between Regular Expressions (Type-3 acceptors) and Re-Ex pattern

matchers (Type-2 acceptors) used in programming languages.
5. For each formal language/grammar in this unit

a. Articulate its definition comparing its characteristics with the others in this unit,
b. Give an example of inputs that can and cannot be accepted by the

language/grammar.
6. Describe a univTuring Machine.
7. Explain how decidability and computability for various automata are related.
8. Explain the Halting problem, why it has no algorithmic solution, and its significance for real-

world algorithmic computation.
9. Give examples of classic uncomputable problems.
10. Explain the Church-Turing Thesis and its significance for algorithmic computation.
11. Explain how invariants assist in proving the correctness of an algorithm as a formal model.

Illustrative Learning Outcomes

KA Core:
1. For each formal automata in this unit

a. Compare/contrast its deterministic and nondeterministic capabilities.
2. Use a pumping lemma to prove the limitations of Finite State and Pushdown automata.
3. Use arithmetization and diagonalization to prove Turing Machine Halting/Undecidability.
4. Explain a reduction such as between Halting and Undecidability of the language accepted by

a Turing Machine, where one has been previously proven by diagonalization.
5. Convert among equivalently powerful notations for a language, including among DFAs,

NFAs, and regular expressions, and between PDAs and CFGs
6. Explain Rice’s Theorem and its significance.

9

7. Give an example proof of a problem that is uncomputable by reducing a classic known
uncomputable problem to it

8. Explain the Primitive and General Recursive functions (zero, successor, selection, primitive
recursion, composition, and Mu), their significance, and Turing Machine implementations.

9. Explain how computation is performed in Lambda Calculus (e.g., Alpha Conversion and
Beta-Reduction)

Non Core:
10. For a quantum system give examples that explain the following postulates:

a. State Space: system state represented as a unit vector in Hilbert space,
b. State Evolution: the use of unitary operators to evolve system state,
c. State Composition: the use of tensor product to compose systems states,
d. State Measurement: the probabilistic output of measuring a system state.

11. Explain the operation of a quantum XNOT or CNOT gate on a quantum bit represented as a
matrix and column vector respectively

AL-SEP: Society, Ethics, and Professionalism

CS Core: (See also: SEP-Context, SEP-Sustainability)
1. Social, Ethical, and Secure Algorithms
2. Algorithmic Fairness (e.g., Differential Privacy)
3. Accountability/Transparency
4. Responsible algorithms
5. Economic and other impacts of inefficient algorithms
6. Sustainability

Illustrative Learning Outcomes

CS Core:
1. Devise algorithmic solutions to real-world societal problems, such as routing an ambulance to

a hospital
2. Predict and explain the impact that an algorithm may have on the environment and society

when used to solve real-world problems taking into account that it can affect different societal
groups in different ways and the algorithm’s sustainability.

3. Prepare a presentation that justifies the selection of appropriate data structures and/or
algorithms to solve a given real-world industry problem.

4. Give an example that articulates how differential privacy protects knowledge of an individual’s
data.

5. Describe the environmental impacts of design choices that relate to algorithm design.
6. Discuss the tradeoffs involved in proof-of-work and proof-of-stake algorithms.

Professional Dispositions

10

● Meticulous: As an algorithm is a formal solution to a computational problem, attention to
detail is important when developing and combining algorithms.

● Persistent: As developing algorithmic solutions to computational problems can be
challenging, computer scientists must be resolute in pursuing such solutions

● Inventive: As computer scientists develop algorithmic solutions to real-world problems,
they must be inventive in developing solutions to these problems.

Math Requirements

Required:
● MSF-Discrete

Course Packaging Suggestions

As depicted in the following figure, the committee envisions two common approaches for
addressing foundational AL topics in CS courses. Both approaches included required
introductory Programming (CS1) and Data Structures (CS2) courses. In the three-course
approach, all CS Core topics are covered. Alternatively, in the four-course approach, AL-Model
unit CS and KA core topics are addressed in a Computational Theory focused course, which
leaves room to address additional KA topics in the third Algorithms course. Both approaches
assume Big-O analysis is introduced in the Data Structures (CS2) course and that graphs are
taught in the third Algorithms course. The committee recognizes that there are many different
approaches for packaging AL topics into courses including, for example, introducing graphs in
CS2 Data Structures, Backtracking in an AI course, and AL-Model topics in a theory course
which also addresses FPL topics. The given example is simply one way to cover the entire AL
CS Core in three introductory courses.

Courses Common to Three and Four Course Exemplars

Programming 1 (CS1)

● AL-Foundational: Fundamental Data Structures and Algorithms (2 hours)
○ Arrays and Strings
○ Linear Search

Note: the following AL topics are demonstrated in CS1, but not explicitly taught as such:

11

● AL-Strategies: Algorithmic Strategies
○ Brute Force (e.g., linear search)
○ Iteration (e.g., linear search)

● AL-Complexity: Complexity Analysis
○ O(1) and O(n) runtime complexities

Data Structures (CS2)

● AL-Foundational: Fundamental Data Structures and Algorithms (12 hours)
○ Abstract Data Types and Operations (ADTs)
○ Binary Search
○ Multi-dimensional Arrays
○ Linked Lists
○ Hash Tables/Maps including conflict resolution strategies
○ Stacks, Queues, and Dequeues
○ Trees: Binary, Ordered, Breadth- and Depth-first search
○ An O(n2) sort, (e.g., Selection Sort)
○ An O(n log n) sort (e.g., Quicksort, Mergesort)

● AL-Strategies: Algorithmic Strategies (3 hour)

○ Brute Force (e.g., selection sort)
○ Decrease-and-Conquer (e.g., depth/breadth tree search)
○ Divide-and-Conquer (e.g., mergesort, quicksort)
○ Recursive (e.g., depth/breadth-first tree/graph search, factorial)
○ Space vs. Time tradeoff (e.g., hashing)

● AL-Complexity: Complexity Analysis
○ Asymptotic complexity analysis
○ Empirical measurements of performance
○ Time-and-space tradeoffs (e.g., hashing)

● AL-SEP: Algorithms and Society Algorithms and Society (2 hours)

Three Course Exemplar Approach
Algorithms-C

● AL-Foundational: Fundamental Data Structures and Algorithms (3 hours)
● AL-Strategies: Algorithmic Strategies (1 hour)

○ Brute Force (e.g., traveling salesperson, knapsack)
○ Decrease-andConquer (e.g., topological sort
○ Divide-andConquer (e.g., Strassen’s algorithm)
○ Dynamic Programming (e.g. Warshall’s, Floyd’s, Bellman-Ford)
○ Greedy (e.g., Dijkstra’s, Kruskal’s)
○ Heuristic (e.g., A*)
○ Transform-and-Conquer/Reduction (e.g., heapsort, trees (2-3, AVL, Red-Black))

● AL-Models: Computational Models (6 hours)
○ All CS core topics

Four Course Exemplar Approach
Algorithms-C

● All topics from Algorithms-C course plus AL-Foundational KA Core (6 hours)

Computation Theory

12

● AL-Complexity: Complexity Analysis (3 hours)

○ Turing Machine-based models of complexity (P, NP, and NP-C classes)
○ Space complexity (NSpace, PSpace Savitch’ Theorem)

● AL-Models: Computational Models (29 hours)
○ All CS and KA Core topics

Committee

Chair: Richard Blumenthal, Regis University, Denver, Colorado, USA

Members:

● Cathy Bareiss, Bethel University, Mishawaka, Minnesota, USA
● Tom Blanchet, Hillman Companies Inc., Boulder, Colorado, USA
● Doug Lea, State University of New York at Oswego, Oswego, New York, USA
● Sara Miner More, John Hopkins University, Baltimore, Maryland, USA
● Mia Minnes, University of California San Diego, California, USA
● Atri Rudra, University at Buffalo, Buffalo, New York, USA
● Christian Servin, El Paso Community College, El Paso, Texas, USA

Appendix: Core Topics and Skill Levels

Many

KA KU Topic Performa
nce

CS/K
A

Hours

AL Foundational

Complexity

2. Arrays (single & multi dimension, strings)
 1a. ADT and Dictionary operations
 2b i. Foundational complexity classes: Constant O(1)

Explain
Apply
Explain

CS 1

AL Foundational
Complexity
Strategies

11a. Search O(n), (e.g., Linear search of an array)
 2b iii. Foundational complexity classes: Linear O(n)
 1a. Brute Force

Apply
Evaluate
Explain

CS 0.5

AL Foundational
Complexity

Strategies

12a. Sorting O(n2), (e.g., Selection sort of an array)
 2b v. Foundational complexity classes:
 Quadratic O(n2)
 1a. Brute Force

Apply
Evaluate
Explain

CS 0.5

AL Foundational
Complexity
Strategies

11b. Search O(log2 n), (e.g., Binary search of an array)
 2b ii. Foundational complexity classes: Logarithmic
 1b ii. Decrease and Conquer

Apply
Evaluate
Explain

 1

AL Foundational
Complexity

12b. Sorting O(n log n), (e.g., Quick, Merge, Tim: array)
 2b iv. Foundational complexity classes: Log Linear

Apply
Evaluate

 1

13

Strategies 1c. Divide-and-Conquer Explain

AL Foundational

Complexity
Strategies

4. Linked Lists
 1a. Dictionary Operations
 11a. Search O(n), (e.g., Linear search of a linked list)
 2b iii. Foundational complexity classes: Linear O(n)
 1a. Brute Force

Explain
Apply
Apply
Evaluate
Explain

 1

AL Foundational

Complexity

5. Stacks
 1a. Dictionary Operations (push, pop)
 2b iii. Foundational complexity classes: Constant O(n)
6. Queues and Deques

Explain
Apply
Explain

 1

 Foundational

Complexity
Strategies

7. Hash tables / Maps
 1a. Dictionary Operations (put, get)
 7a. Collision resolution and complexity
 2b iii. Foundational complexity classes: Constant O(n)
 1f. Time vs. Space tradeoff

Explain
Apply
Explain
Explain
Explain

 1

1

 Foundational”

Strategies

Foundational

Strategies

9. Trees
 1a. Dictionary operations (insert, delete)
 11c. Search DFS/BFS
 2b. Decrease and Conquer

 9b. Balanced Trees (e.g., AVL, 2-3, Red-Black,
 Heaps)
 1e ii. Transform and Conquer: Representation
 change

Explain
Apply
Apply
Explain

Apply
Explain

 1

2

 Foundational

Foundational

Strategies
Foundational
Strategies

8. Graphs (e.g., [un]directed, [a]cyclic, [un]connected,
 [un]weighted)
 8a. Representation: adjacency list vs. matrix

13. Graph Algorithms
 13a. Shortest Path (e.g., Dijkstra’s, Floyd’s)
 1d. Greedy
 1e iv. Dynamic Programming
 13b. Minimal, spanning tree (e.g. Prim’s, Kruskal’s)
 1d. Greedy

Explain

 3

 Foundational 1. Abstract Data Types
3. Records/Structures/Tuples
10. Sets

 1

AL Strategies

Strategies

1. Paradigms demonstrated in AL-Fundamentals
 algorithms: Brute-Force, Decrease-and-Conquer,
 Divide-and-Conquer, Iteration vs. Recursion,
 Time-Space Tradeoff,

 1e. Transform-and-Conquer
 1e i. Instance simplification (Find duplicates by
 pre-sorting)
 1e iii. Problem reduction (Least-common-multiple)

Explain

Explain

 3

1

14

Strategies

Strategies

2. Handling Exponential Growth
 e.g., A*, Backtracking, Branch-and-Bound

1e iv. Dynamic Programming
 e.g., Bellman-Ford, Knapsack, Floyd-Warshall

Explain 1

1

AL Complexity

Complexity

Complexity

Strategies

Complexity

1. Analysis Framework
2. Asymptotic complexity analysis
 Big O, Little O, Big Omega, and Big Theta

2b. Foundational complexity classes demonstrated by
 AL-Fundamentals algorithms:
 Constant, Logarithmic, Linear, Log Linear,
 Quadratic, and Cubic

4. Tractability and Intractability
 Foundational Complexity Classes: Exponential O(2n)
 P, NP and NP-C complexity classes
 Reductions
 Problems Traveling Salesperson, Knapsack, SAT
 1. Paradigms: Exhaustive brute force, Dynamic
 Programming
 2b viii. Factorial complexity classes: Factorial O(n!)
 All Permutations, Hamiltonian Circuit

Explain CS 1

1

4

AL Models

Models

Models

Models

Models

1a. Finite State Automata
 2a. Regular language, grammar, and expressions

1b. Pushdown Automata
 2b. Context-Free language and grammar

1d. Turing Machine
 2d. Recursively Enumerable language and grammar
 1c. Linear-Bounded
 2c. Context-Sensitive language and
 grammar
4. Decidability, Computability, Halting problem
5. The Church-Turing Thesis

6. Algorithmic Correctness
 Invariants (e.g., in: iteration, recursion, tree search)

Apply
Explain

Apply
Explain

Explain

CS 1

1

2

1

1

AL SEP 1. Social, Ethical, and Secure Algorithms
2. Algorithmic Fairness (e.g. differential privacy)
3. Accountability/Transparency
4. Responsible algorithms
5. Economic and other impacts of algorithms
6. Sustainability

Explain CS In
SEP

Hours

