

1

Operating Systems (OS)

Preamble

Operating system is the collection of services needed to safely interface the hardware with
applications. Core topics focus on the mechanisms and policies needed to virtualize
computation, memory, and I/O. Overarching themes that are reused at many levels in
computer systems are well illustrated in operating systems (e.g. polling vs interrupts, caching,
flexibility costs overhead, similar scheduling approaches to processes, page replacement, etc.).
OS should focus on how those concepts apply in other areas of CS - trust boundaries,
concurrency, persistence, safe extensibility.

Operating systems remains an important Computer Science Knowledge Area in spite of how OS
functions may be redistributed into computer architecture or specialized platforms. A CS
student needs to have a clear mental model of how a pipelined instruction executes to how data
scope impacts memory location. Students can apply basic OS knowledge to domain-specific
architectures (machine learning with GPUs or other parallelized systems, mobile devices,
embedded systems, etc.). Since all software must leverage operating systems services,
students can reason about the efficiency, required overhead and the tradeoffs inherent to any
application or code implementation. The study of basic OS algorithms and approaches provides
a context against which students can evaluate more advanced methods. Without an
understanding of sandboxing, how programs are loaded into processes, and execution,
students are at a disadvantage when understanding or evaluating vulnerabilities to vectors of
attack.

Changes since CS 2013

The core of operating systems knowledge from CC2013 has been propagated from CC2023 to
the updated knowledge area. Changes from CC2013 include moving of File systems
knowledge (now called File Systems API and Implementation) and Device Management to KA
Core from elective and Performance and Evaluation knowledge units to the Systems
Fundamentals Knowledge area. The addition of persistent data storage and device I/O reflects
the impact of file storage and device I/O limitations on the performance (e.g. parallel algorithms,
etc.). More advanced topics in File Systems API and Implementation and Device Management
were moved to a new Knowledge Unit Advanced File Systems. The Performance and
Evaluation knowledge unit moved to Systems Fundamentals with the idea that performance and
evaluation approaches for operating systems are mirrored at other levels and are best
presented in this context.

Systems programming and creation of platform specific executables are operating systems
related topics as they utilize the interface provided by the operating system. These topics are

2

listed as knowledge units within the Foundations of Programming languages (FPL) knowledge
area because they are also programming related and would benefit from that context.

Overview

“Role and purpose of operating systems” and “Principles of operating systems” provide a high-
level overview of traditional operating systems responsibilities. Required computer architecture
mechanisms for safe multitasking and resource management are presented. This provides a
basis for application services needed to provide a virtual processing environment. These items
are in the CS Core because they enable reasoning on possible security threat vectors and
application performance bottlenecks.

“Concurrency” CS Core topics focus on programming paradigms that are needed to share
resources within and between operating systems and applications. “Concurrency” KA Core
topic provides enough depth into concurrency primitives and solution design patterns so that
students can evaluate, design, and implement correct parallelized software components.
Although many students may not become operating systems developers, parallel components
are widely used in specialized platforms and GPU-based machine learning applications. Non-
core topics focus on emerging concepts and examples where there is more integration between
architecture, operating systems functions and application software to improve performance and
safety.

“Protection and security” CS Core overlaps the dedicated Security Knowledge Area. However,
operating systems provide a unique perspective that considers the lower level mechanisms that
must be secured for safe system function. “Protection and security” KA Core extends the CS
Core topics to operating systems access and control functions that are available to applications
and end-users. Non-core focuses on advanced security mechanisms within specific operating
systems as well as emerging topics.

“Scheduling”, “Process model”, “Memory Management”, “Device management” and “File
systems API and Implementation” KA Core provide depth to the CS Core topics. They provide
the basis for virtualization and safe resource management. The placement of these topics in
the KA Core does not reduce their importance. It is expected that many of these topics will be
covered along with the CS Core topics. Non-core topics focus on emerging topics and provide
additional depth to the KA Core topics.

“Society, Ethics and Professionalism” KA Core focuses on open source and life cycle issues.
These software engineering issues are not the sole purview of operating systems as they also
exist for specialized platforms and applications level knowledge areas.

“Advanced File Systems”, “Virtualization”, “Real-time and Embedded Systems”, and “Fault
tolerance” KA Core and Non Core include advanced topics. These topics overlap with
“Specialized Platform”, “Architecture”, “Parallel and Distributed Systems” and “Systems Fundamentals”
Knowledge Areas.

3

Core Hours

Knowledge Units CS Core KA Core

Role and Purpose of Operating Systems 2

Principles of Operating System 2

Concurrency 2 1

Protection and Safety 2 1

Scheduling 1

Society, Ethics and Professionalism (Hours included in
SEP

Process Model 1

Memory Management 2

Device Management 1

File Systems API and Implementation 2

Virtualization 3

Real-time and Embedded Systems 2

Fault Tolerance 3

Knowledge Units

OS-Purpose: Role and purpose of the operating system

CS Core:
1. Operating system as mediator between general purpose hardware and application-specific

software
Example concepts: Operating system as an abstract virtual machine via an API)

2. Universal operating system functions
 Example concepts:

a. Interfaces (process, user, device, etc)
b. Persistence of data

3. Extended and/or specialized operating system functions (Example concepts: Embedded
systems, Server types such as file, web, multimedia, boot loaders and boot security)

4

4. Design issues (e.g. efficiency, robustness, flexibility, portability, security, compatibility,
power, safety) Example concepts: Tradeoffs between error checking and performance,
flexibility and performance, and security and performance

5. Influences of security, networking, multimedia, parallel and distributed computing
6. Overarching concern of security/protection: Neglecting to consider security at every layer

creates an opportunity to inappropriately access resources.
 Example concepts:

a. Unauthorized access to files on an unencrypted drive can be achieved by moving the
media to another computer,

b. Operating systems enforced security can be defeated by infiltrating the boot layer before
the operating system is loaded and

c. Process isolation can be subverted by inadequate authorization checking at API
boundaries

d. Vulnerabilities in system firmware can provide attack vectors that bypass the operating
system entirely

e. Improper isolation of virtual machine memory, computing, and hardware can expose the
host system to attacks from guest systems

f. The operating system may need to mitigate exploitation of hardware and firmware
vulnerabilities, leading to potential performance reductions (e.g. Spectre and Meltdown
mitigations)

7. Exposure of operating systems functions in shells and systems programming (See also: FPL-
Scripting)

Illustrative Learning Outcomes:

CS Core:
1. Understand the objectives and functions of modern operating systems
2. Evaluate the design issues in different usage scenarios (e.g. real time OS, mobile, server,

etc)
3. Understand the functions of a contemporary operating system with respect to convenience,

efficiency, and the ability to evolve
4. Understand how evolution and stability are desirable and mutually antagonistic in operating

systems function

OS-Principles: Principles of operating systems

CS Core:
1. Operating system software design and approaches such as Monolithic, Layered, Modular,

Micro-kernel models and Unikernel
2. Abstractions, processes, and resources

3. Concept of system calls and links to application program interfaces (APIs)(See also: AR-C:
Assembly Level Machine Organization)

 Example concepts:

5

a. APIs (Win32, Java, Posix, etc) bridge the gap between highly redundant system calls
and functions that are most aligned with the requests an application program would
make

b. Approaches to syscall ABI (Linux "perma-stable" vs. breaking ABI every release).
4. The evolution of the link between hardware architecture and the operating system functions

5. Protection of resources means protecting some machine instructions/functions (See also:
AR-C: Assembly Level Machine Organization)
Example concepts
a. Applications cannot arbitrarily access memory locations or file storage device addresses
b. Protection of coprocessors and network devices

6. Leveraging interrupts from hardware level: service routines and implementations (See also:
AR-C: Assembly Level Machine Organization)

 Example concepts
a. Timer interrupts for implementing timeslices
b. I/O interrupts for putting blocking threads to sleep without polling

7. Concept of user/system state and protection, transition to kernel mode using system calls

(See also: AR-C: Assembly Level Machine Organization)
8. Mechanism for invoking of system calls, the corresponding mode and context switch and

return from interrupt (See also: AR-C: Assembly Level Machine Organization)
9. Performance costs of context switches and associated cache flushes when performing

process switches in Spectre-mitigated environments

Illustrative Learning Outcomes
CS Core:
1. Understand how the application of software design approaches to operating systems

design/implementation (e.g. layered, modular, etc) affects the robustness and maintainability
of an operating system

2. Categorize system calls by purpose
3. Understand dynamics of invoking a system call (passing parameters, mode change, etc)
4. Evaluate whether a function can be implemented in the application layer or can only be

accomplished by system calls
5. Apply OS techniques for isolation, protection and throughput across OS functions (e.g.

starvation similarities in process scheduling, disk request scheduling, semaphores, etc) and
beyond

6. Understand how the separation into kernel and user mode affects safety and performance.
7. Understand the advantages and disadvantages of using interrupt processing in enabling

multiprogramming
8. Analyze for potential vectors of attack via the operating systems and the security features

designed to guard against them

OS-Concurrency: Concurrency

CS Core:
1. Thread abstraction relative to concurrency

6

2. Race conditions, critical regions (role of interrupts if needed)(See also: PDC-A: Programs
and Execution)

3. Deadlocks and starvation
4. Multiprocessor issues (spin-locks, reentrancy)
5. Multiprocess concurrency vs. multithreading

KA Core:
6. Thread creation, states, structures(See also: SF-B: Basic Concepts)
7. Thread APIs
8. Deadlocks and starvation (necessary conditions/mitigations)
9. Implementing thread safe code (semaphores, mutex locks, cond vars) (See also: AR-G:

Performance and Energy Efficiency, SF-E: Performance Evaluation)

10. Race conditions in shared memory (See also: PDC-A: Programs and Execution)
Non-Core:

11. Managing atomic access to OS objects Example concept: Big kernel lock vs. many small
locks vs. lockless data structures like lists

Illustrative Learning Outcomes
CS Core:

1. Understand the advantages and disadvantages of concurrency as inseparable functions
within the operating system framework

2. Understand how architecture level implementation results in concurrency problems including
race conditions

3. Understand concurrency issues in multiprocessor systems
KA Core:

4. Understand the range of mechanisms that can be employed at the operating system level to
realize concurrent systems and describe the benefits of each

5. Understand techniques for achieving synchronization in an operating system (e.g., describe
how a semaphore can be implemented using OS primitives) including intra-concurrency
control and use of hardware atomics

6. Accurately analyze code to identify race conditions and appropriate solutions for addressing
race conditions

OS-Protection: Protection and Safety

CS Core:

1. Overview of operating system security mechanisms (See also: SEC-A: Foundational
Security)

2. Attacks and antagonism (scheduling, etc) (See also: SEC-A: Foundational Security)
3. Review of major vulnerabilities in real operating systems (See also: SEC-A: Foundational

Security)
4. Operating systems mitigation strategies such as backups (See also: SF-F: System

Reliability)
KA Core:

7

5. Policy/mechanism separation (See also: SEC-F-Security Governance)
6. Security methods and devices (See also: SEC-F-Security Governance)
 Example concepts:

a. Rings of protection (history from Multics to virtualized x86)
b. x86_64 rings -1 and -2 (hypervisor and ME/PSP)

7. Protection, access control, and authentication (See also: SEC-F-Security Governance)

Illustrative Learning Outcomes
CS Core:

1. Understand the requirement for protection and security mechanisms in an operating
systems

2. List and describe the attack vectors that leverage OS vulnerabilities
3. Understand the mechanisms available in an OS to control access to resources

KA Core:
4. Summarize the features and limitations of an operating system that impact protection and

security

OS-Scheduling: Scheduling

KA Core:
1. Preemptive and non-preemptive scheduling
2. Schedulers and policies. Example concepts: First come, first serve, Shortest job first,

Priority, Round Robin, and Multilevel (See also: SF-C: Resource Allocation and
Scheduling)

3. Concepts of SMP/multiprocessor scheduling and cache coherence (See also: AR-C:
Assembly Level Machine Organization)

4. Timers (e.g. building many timers out of finite hardware timers) (See also: AR-C:
Assembly Level Machine Organization)

5. Fairness and starvation
Non-Core:

6. Subtopics of operating systems such as energy-aware scheduling and real-time scheduling

(See also: AR-G: Performance and Energy Efficiency, SPD-Embedded, SPD-Mobile

5‐D?‐)

7. Cooperative scheduling, such as Linux futexes and userland scheduling

Illustrative Learning Outcomes
KA Core:

1. Compare and contrast the common algorithms used for both preemptive and non-
preemptive scheduling of tasks in operating systems, such as priority, performance
comparison, and fair-share schemes

2. Understand relationships between scheduling algorithms and application domains
3. Understand each types of processor schedulers such as short-term, medium-term, long-

term, and I/O

8

4. Evaluate a problem or solution to determine appropriateness for asymmetric and/or
symmetric multiprocessing.

5. Evaluate a problem or solution to determine appropriateness as a processes vs threads
6. Understand the need for preemption and deadline scheduling

Non-Core:
7. Understand the ways that the logic embodied in scheduling algorithms is applicable to other

operating systems mechanisms, such as first come first serve or priority to disk I/O, network
scheduling, project scheduling, and problems beyond computing

OS-Process: Process Model

KA Core:
1. Processes and threads relative to virtualization-Protected memory, process state, memory

isolation, etc

2. Memory footprint/segmentation (stack, heap, etc)(See also: AR-C: Assembly Level
Machine Organization)

3. Creating and loading executables and shared libraries(See also: FPL-H: Language
Translation and Execution or Systems Interaction)
 Examples:
a. Dynamic linking, GOT, PLT
b. Structure of modern executable formats like ELF

4. Dispatching and context switching (See also: AR-C: Assembly Level Machine
Organization)
5. Interprocess communication (See also: PDC-B: Communication)
 Example concepts: Shared memory, message passing, signals, environment variables, etc

Illustrative Learning Outcomes
KA Core:

1. Understand how processes and threads use concurrency features to virtualize control
2. Understand reasons for using interrupts, dispatching, and context switching to support

concurrency and virtualization in an operating system
3. Understand the different states that a task may pass through and the data structures

needed to support the management of many tasks
4. Understand the different ways of allocating memory to tasks, citing the relative merits of

each
5. Apply the appropriate interprocess communication mechanism for a specific purpose in a

programmed software artifact

OS-Memory: Memory Management

KA Core:

9

1. Review of physical memory, address translation and memory management hardware(See
also: AR-D: Memory Hierarchy)

2. Impact of memory hierarchy including cache concept, cache lookup, etc on operating

system mechanisms and policy (See also: AR-D: Memory Hierarchy, SF-D: System
Performance)
 Example concepts:
a. CPU affinity and per-CPU caching is important for cache-friendliness and performance

on modern processors

3. Logical and physical addressing, address space virtualization(See also: AR-D: Memory
Hierarchy)

4. Concepts of paging, page replacement, thrashing and allocation of pages and frames
5. Allocation/deallocation/storage techniques (algorithms and data structure) performance and

flexibility
 Example concepts:
a. Arenas, slab allocators, free lists, size classes, heterogeneously sized pages

(hugepages)
6. Memory caching and cache coherence and the effect of flushing the cache to avoid

speculative execution vulnerabilities(See also: AR-F: Functional Organization, AR-D:
Memory Hierarchy, SF-D: System Performance)

7. Security mechanisms and concepts in memory mgmt including sandboxing, protection,
isolation, and relevant vectors of attack
Non-Core:

8. Virtual Memory: leveraging virtual memory hardware for OS services and efficiency

Illustrative Learning Outcomes
KA Core:

1. Explain memory hierarchy and cost-performance trade-offs
2. Summarize the principles of virtual memory as applied to caching and paging
3. Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary

memory) and processor speed
4. Describe the reason for and use of cache memory (performance and proximity, how caches

complicate isolation and VM abstraction)
5. Code/Develop efficient programs that consider the effects of page replacement and frame

allocation on the performance of a process and the system in which it executes
Non-Core:

6. Explain how hardware is utilized for efficient virtualization

OS-Devices: Device management

KA Core:

1. Buffering strategies (See also: AR-E: Interfacing and Communication)

10

2. Direct Memory Access and Polled I/O, Memory-mapped I/O Example concept: DMA

communication protocols (ring buffers etc)(See also: AR-E: Interfacing and
Communication)

3. Historical and contextual - Persistent storage device management (magnetic, SSD, etc)
Non-Core:

4. Device interface abstractions, HALs
5. Device driver purpose, abstraction, implementation and testing challenges
6. High-level fault tolerance in device communication

Illustrative Learning Outcomes
KA Core:

1. Understand architecture level device control implementation and link relevant operating
system mechanisms and policy (e.g. Buffering strategies, Direct memory access, etc)

2. Understand OS device management layers and the architecture (device controller, device
driver, device abstraction, etc)

3. Understand the relationship between the physical hardware and the virtual devices
maintained by the operating system

4. Explain I/O data buffering and describe strategies for implementing it
5. Describe the advantages and disadvantages of direct memory access and discuss the

circumstances in which its use is warranted
Non-Core:

6. Describe the complexity and best practices for the creation of device drivers

OS-Files: File Systems API and Implementation

KA Core:
1. Concept of a file including Data, Metadata, Operations and Access-mode
2. File system mounting
3. File access control
4. File sharing
5. Basic file allocation methods including linked, allocation table, etc
6. File system structures comprising file allocation including various directory structures and

methods for uniquely identifying files (name, identified or metadata storage location)
7. Allocation/deallocation/storage techniques (algorithms and data structure) impact on

performance and flexibility (i.e. Internal and external fragmentation and compaction)
8. Free space management such as using bit tables vs linking
9. Implementation of directories to segment and track file location

Illustrative Learning Outcomes
KA Core:

1. Understand the choices to be made in designing file systems

11

2. Evaluate different approaches to file organization, recognizing the strengths and
weaknesses of each

3. Apply software constructs appropriately given knowledge of the file system implementation

OS-SEP: Society, Ethics and Professionalism

KA Core:

1. Open source in operating systems (See also: SEP-Intellectual Property)
 Example concepts

a. Identification of vulnerabilities in open source kernels
b. Open source guest operating systems
c. Open source host operating systems
d. Changes in monetization (paid vs free upgrades)

2. End-of-life issues with sunsetting operating systems (See also: SE-XXXXXXX)
Example concepts: Privacy implications of using proprietary operating
systems/operating environments, including telemetry, automated scanning of
personal data, built-in advertising, and automatic cloud integration

Illustrative Learning Outcomes
KA Core:

1. Understand advantages and disadvantages of finding and addressing bugs in open source
kernels

2. Contextualize history and positive and negative impact of Linux as an open source product
3. List complications with reliance on operating systems past end-of-life
4. Understand differences in finding and addressing bugs for various operating systems

payment models

OS-AdvFiles: Advanced File systems

KA Core:
1. File systems: partitioning, mount/unmount, virtual file systems
2. In-depth implementation techniques

3. Memory-mapped files (See also AR-E: Interfacing and Communication)
4. Special-purpose file systems
5. Naming, searching, access, backups
6. Journaling and log-structured file systems (See also SF-F: System Reliability)

Non-Core: (including Emerging topics)
1. Distributed file systems (e.g NAS, OSS, SAN, Cloud, etc)
2. Encrypted file systems
3. Fault tolerance (e.g. fsync and other things databases need to work correctly).

Illustrative Learning Outcomes
KA Core:

12

1. Understand how hardware developments have led to changes in the priorities for the design
and the management of file systems

2. Map file abstractions to a list of relevant devices and interfaces
3. Identify and categorize different mount types
4. Understand specific file systems requirements and the specialize file systems features that

meet those requirements
5. Understand the use of journaling and how log-structured file systems enhance fault

tolerance
Non-Core:

6. Understand purpose and complexity of distributed file systems
7. List examples of distributed file systems protocols
8. Understand mechanisms in file systems to improve fault tolerance

OS-Virtualization: Virtualization

KA Core:

1. Using virtualization and isolation to achieve protection and predictable performance (See
also: SF-D-System Performance)

2. Advanced paging and virtual memory
3. Virtual file systems and virtual devices

4. Containers (See also: SF-D-System Performance)
Example concepts: Emphasizing that containers are NOT virtual machines, since they do not
contain their own operating systems [where operating system is pedantically defined as the
kernel]
5. Thrashing
a. Popek and Goldberg requirements for recursively virtualizable systems

Non-core:

6. Types of virtualization (including Hardware/Software, OS, Server, Service, Network) (See
also: SF-D-System Performance)

7. Portable virtualization; emulation vs. isolation (See also: SF-D-System Performance)
8. Cost of virtualization (See also: SF-D-System Performance, SF-E: Performance

Evaluation)
9. VM and container escapes, dangers from a security perspective (See also: SF-D-System

Performance, SEC-Engineering)
10. Hypervisors- hardware virtual machine extensions
 Example concepts:

a. Hypervisor monitor w/o a host operating system
b. Host OS with kernel support for loading guests, e.g. QEMU KVM

Illustrative Learning Outcomes
KA Core:

1. Understand how hardware architecture provides support and efficiencies for virtualization

13

2. Understand difference between emulation and isolation
3. Evaluate virtualization trade-offs

Non-Core:
4. Understand hypervisors and the need for them in conjunction with different types of

hypervisors
a. Dynamic recompilation as an intermediary between full emulation and use of hardware

hypervisor extensions on non-virtualizable ISAs whenever the guest and host system
architectures match

OS-Real-time: Real-time/embedded

KA Core:
1. Process and task scheduling
2. Deadlines and real-time issues (See also: SPD-Embedded)
3. Low-latency/soft real-time" vs "hard real time" (See also: SPD-Embedded, FPL-S:

Embedded Computing and Hardware Interface)
Non-Core:

4. Memory/disk management requirements in a real-time environment
5. Failures, risks, and recovery
6. Special concerns in real-time systems (safety)

Illustrative Learning Outcomes
KA Core:

1. Understand what makes a system a real-time system
2. Understand latency and its sources in software systems and its characteristics.
3. Understand special concerns that real-time systems present, including risk, and how these

concerns are addressed
Non-Core:

4. Understand specific real time operating systems features and mechanisms

OS-Faults: Fault tolerance

KA Core:

1. Reliable and available systems (See also: SF-Reliability 1)
2. Software and hardware approaches to address tolerance (RAID) (See also: SF-Reliability)

Non-Core:

3. Spatial and temporal redundancy (See also: SF-Reliability 2)
4. Methods used to implement fault tolerance (See also: SF-Reliability 2,3)
5. Error identification and correction mechanisms (See also: AR-Memory)

a. Checksumming of volatile memory in RAM
6. File system consistency check and recovery

7. Journaling and log-structured file systems (See also: SF-Reliability5)
8. Use-cases for fault-tolerance (databases, safety-critical) (See also: SF-Reliability1)

14

9. Examples of OS mechanisms for detection, recovery, restart to implement fault tolerance,

use of these techniques for the OS’s own services (See also: SF-Reliability)

Illustrative Learning Outcomes
KA Core:

3. Understand how operating system can facilitate fault tolerance, reliability, and availability
4. Understand the range of methods for implementing fault tolerance in an operating system
5. Understand how an operating system can continue functioning after a fault occurs
6. Understand the performance and flexibility trade offs that impact using fault tolerance

Non-Core:
7. Describe operating systems fault tolerance issues and mechanisms in detail

Professional Dispositions

● Proactively considers the implications for security and performance of decisions
● Meticulously considers implication of OS mechanisms on any project

Math Requirements

Required:

● Discrete math

Course Packaging Suggestions

Introductory Course to include the following:

● OS-Purpose: Role and Purpose of Operating Systems- 3 hours
● OS-Principles: Principles of Operating Systems- 3 hours
● OS-Concurrency: Concurrency- 7 hours
● OS-Scheduling: Scheduling- 3 hours
● OS-Process: Process Model- 3 hours
● OS-Memory: Memory Management- 4 hours
● OS-Protection: Protect and Safety- 4 hours
● OS-Devices: Device Management- 2 hours
● OS-Files: File Systems API and Implementation- 2 hours
● OS-Virtualization: Virtualization- 3 hours
● OS-AdvFiles: Advanced File Systems- 2 hours
● OS-Real-time: Real-time and Embedded Systems- 1 hours
● OS-Faults: Fault Tolerance- 1 hours
● OS-SEP: Social, Ethical and Professional topics- 4 hours

Pre-requisites:
● Assembly Level Machine Organization from Architecture

15

● Memory Management from Architecture
● Software Reliability from Architecture
● Interfacing and Communication from Architecture
● Functional Organization from Architecture

Skill statement: A student who completes this course should understand the impact and
implications of operating system resource management in terms of performance and security. A
student should understand and implement interprocess communication mechanisms safely. A
student should differentiate between the use and evaluation of open source and/or proprietary
operating systems. A student should understand virtualization as a feature of safe modern
operating systems implementation.

Committee

Chair: Monica D. Anderson, University of Alabama, Tuscaloosa, AL, USA

Members:

● Renzo Davoli
● Avi Silberschatz
● Marcelo Pias, Federal University of Rio Grande (FURG), Brazil
● Mikey Goldweber, Xavier University, Cincinnati, USA
● Qiao Xiang, Xiamen University, China

