
1

Body of Knowledge

 Knowledge Area # Knowledge

Units

CS Core

Hours

KA Core

Hours

AI Artificial Intelligence 12 12 18

AL Algorithmic Foundations 5 32 32

AR Architecture and Organization 11 9 16

DM Data Management 13 10 26

FPL Foundations of Programming Languages 22 21 19

GIT Graphics and Interactive Techniques 12 4 70

HCI Human-Computer Interaction 6 8 16

MSF Mathematical and Statistical Foundations 5 55 145

NC Networking and Communication 8 7 24

OS Operating Systems 14 8 13

PDC Parallel and Distributed Computing 5 9 26

SDF Software Development Fundamentals 5 43

SE Software Engineering 9 6 21

SEC Security 7 6 35

SEP Society, Ethics, and the Profession 11 18 14

SF Systems Fundamentals 9 18 8

SPD Specialized Platform Development 8 4

 Total 162 270 N/A

2

3

Artificial Intelligence (AI)

Preamble

Artificial intelligence (AI) studies problems that are difficult or impractical to solve with traditional

algorithmic approaches. These problems are often reminiscent of those considered to require human

intelligence, and the resulting AI solution strategies typically generalize over classes of problems. AI

techniques are now pervasive in computing, supporting everyday applications such as email, social

media, photography, financial markets, and intelligent virtual assistants (e.g., Siri, Alexa). These

techniques are also used in the design and analysis of autonomous agents that perceive their

environment and interact rationally with it, such as self-driving vehicles and other robots.

Traditionally, AI has included a mix of symbolic and subsymbolic approaches. The solutions it provides

rely on a broad set of general and specialized knowledge representation schemes, problem solving

mechanisms, and optimization techniques. These approaches deal with perception (e.g., speech

recognition, natural language understanding, computer vision), problem solving (e.g., search, planning,

optimization), generation (e.g., narrative, conversation, images, models, recommendations), acting

(e.g., robotics, task-automation, control), and the architectures needed to support them (e.g., single

agents, multi-agent systems). Machine learning may be used within each of these aspects and can

even be employed end-to-end across all of them. The study of Artificial Intelligence prepares students

to determine when an AI approach is appropriate for a given problem, identify appropriate

representations and reasoning mechanisms, implement them, and evaluate them with respect to both

performance and their broader societal impact.

Over the past decade, the term “artificial intelligence” has become commonplace within businesses,

news articles, and everyday conversation, driven largely by a series of high-impact machine learning

applications. These advances were made possible by the widespread availability of large datasets,

increased computational power, and algorithmic improvements. In particular, there has been a shift

from engineered representations to representations learned automatically through optimization over

large datasets. The resulting advances have put such terms as “neural networks” and “deep learning”

into everyday vernacular. Businesses now advertise AI-based solutions as value-additions to their

services, so that “artificial intelligence” is now both a technical term and a marketing buzzword. Other

disciplines, such as biology, art, architecture, and finance, increasingly use AI techniques to solve

problems within their disciplines.

For the first time in our history, the broader population has access to sophisticated AI-driven tools,

including tools to generate essays or poems from a prompt, artwork from a description, and fake

photographs or videos depicting real people. AI technology is now in widespread use in stock trading,

curating our news and social media feeds, automated evaluation of job applicants, detection of medical

conditions, and influencing prison sentencing through recidivism prediction. Consequently, AI

4

technology can have significant societal impacts and ethical considerations that must be understood

and considered when developing and applying it.

Changes since CS2013

To reflect this recent growth and societal impact, the knowledge area has been revised from CS2013 in

the following ways.

● The name has changed from “Intelligent Systems” to “Artificial Intelligence,” to reflect the most

common terminology used for these topics within the field and its more widespread use outside

the field.

● An increased emphasis on neural networks and representation learning reflects the recent

advances in the field. Given its key role throughout AI, search is still emphasized but there is a

slight reduction on symbolic methods in favor of understanding subsymbolic methods and

learned representations. It is important, however, to retain knowledge-based and symbolic

approaches within the AI curriculum because these methods offer unique capabilities, are used

in practice, ensure a broad education, and because more recent neurosymbolic approaches

integrate both learned and symbolic representations.

● There is an increased emphasis on practical applications of AI, including a variety of areas (e.g.,

medicine, sustainability, social media). This includes explicit discussion of tools that employ

deep generative models (e.g., ChatGPT, DALL-E, Midjourney) and are now in widespread use,

covering how they work at a high level, their uses, and their shortcomings/pitfalls.

● The curriculum reflects the importance of understanding and assessing the broader societal

impacts and implications of AI methods and applications, including issues in AI ethics, fairness,

trust, and explainability.

● The AI knowledge area includes connections to data science through 1) cross-connections with

the Data Management and other knowledge areas and 2) a sample Data Science model course.

● There are explicit goals to develop basic AI literacy and critical thinking in every computer

science student, given the breadth of interconnections between AI and other knowledge areas

in practice.

Consider recent AI advances when using this curriculum

The field of AI is undergoing rapid development and increasingly widespread applications. Since the

first draft of this document, several new techniques (e.g., generative networks, large language models)

have become widely used and so were added to the CS or KA Cores. This document is as current as

we can make it in 2023. However, we expect such rapid changes to continue in the subfield of AI during

the expected life of this document. Consequently, it is imperative that faculty teaching AI understand

current advances and consider whether these advances should be taught in order to keep the

curriculum current.

Core Hours

Knowledge Unit CS Core KA Core

5

Fundamental Issues 2 1

Search 2 + 3 (AL) 6

Fundamental Knowledge Representation and

Reasoning

1 + 1 (MSF) 2

Machine Learning 4 6

Applications and Societal Impact 3 3

Probabilistic Representation and Reasoning

Planning

Logical Representation and Reasoning

Agents and Cognitive Systems

Natural Language Processing

Robotics

Perception and Computer Vision

Total 12 18

The CS Core includes 3 hours that are shared with and counted under Algorithm Foundations

(Uninformed search) and 1 hour that is shared with and counted under Mathematical Foundations

(Probability).

Knowledge Units

AI-Introduction: Fundamental Issues

CS Core:

1. Overview of AI problems, Examples of successful recent AI applications

2. Definitions of agents with examples (e.g., reactive, deliberative)

3. What is intelligent behavior?

a. The Turing test and its flaws

b. Multimodal input and output

c. Simulation of intelligent behavior

d. Rational versus non-rational reasoning

4. Problem characteristics

a. Fully versus partially observable

6

b. Single versus multi-agent

c. Deterministic versus stochastic

d. Static versus dynamic

e. Discrete versus continuous

5. Nature of agents

a. Autonomous, semi-autonomous, mixed-initiative autonomy

b. Reflexive, goal-based, and utility-based

c. Decision making under uncertainty and with incomplete information

d. The importance of perception and environmental interactions

e. Learning-based agents

f. Embodied agents

i. sensors, dynamics, effectors

6. Overview of AI Applications, growth, and impact (economic, societal, ethics)

KA Core:

7. Practice identifying problem characteristics in example environments

8. Additional depth on nature of agents with examples

9. Additional depth on AI Applications, Growth, and Impact (economic, societal, ethics, security)

Non-core:

10. Philosophical issues

11. History of AI

Illustrative Learning Outcomes:

1. Describe the Turing test and the “Chinese Room” thought experiment.

2. Differentiate between optimal reasoning/behavior and human-like reasoning/behavior.

3. Differentiate the terms: AI, machine learning, and deep learning.

4. Enumerate the characteristics of a specific problem.

AI-Search: Search

CS Core:

1. State space representation of a problem

a. Specifying states, goals, and operators

b. Factoring states into representations (hypothesis spaces)

c. Problem solving by graph search

i. e.g., Graphs as a space, and tree traversals as exploration of that space

ii. Dynamic construction of the graph (not given upfront)

2. Uninformed graph search for problem solving (See also: AL-Foundational)

a. Breadth-first search

b. Depth-first search

i. With iterative deepening

c. Uniform cost search

3. Heuristic graph search for problem solving (See also: AL-Strategies)

a. Heuristic construction and admissibility

7

b. Hill-climbing

c. Local minima and the search landscape

i. Local vs global solutions

d. Greedy best-first search

e. A* search

4. Space and time complexities of graph search algorithms

KA Core:

5. Bidirectional search

6. Beam search

7. Two-player adversarial games

a. Minimax search

b. Alpha-beta pruning

i. Ply cutoff

8. Implementation of A* search

9. Constraint satisfaction

Non-core:

10. Understanding the search space

a. Constructing search trees

b. Dynamic search spaces

c. Combinatorial explosion of search space

d. Search space topology (e.g., ridges, saddle points, local minima)

11. Local search

12. Tabu search

13. Variations on A* (IDA*, SMA*, RBFS)

14. Two-player adversarial games

a. The horizon effect

b. Opening playbooks/endgame solutions

c. What it means to “solve” a game (e.g., checkers)

15. Implementation of minimax search, beam search

16. Expectimax search (MDP-solving) and chance nodes

17. Stochastic search

a. Simulated annealing

b. Genetic algorithms

c. Monte-Carlo tree search

Illustrative Learning Outcomes:

1. Design the state space representation for a puzzle (e.g., N-queens or 3-jug problem)

2. Select and implement an appropriate uninformed search algorithm for a problem (e.g., tic-tac-toe),

and characterize its time and space complexities.

3. Select and implement an appropriate informed search algorithm for a problem after designing a

helpful heuristic function (e.g., a robot navigating a 2D gridworld).

4. Evaluate whether a heuristic for a given problem is admissible/can guarantee an optimal solution.

8

5. Apply minimax search in a two-player adversarial game (e.g., connect four), using heuristic

evaluation at a particular depth to compute the scores to back up. [KA Core]

6. Design and implement a genetic algorithm solution to a problem.

7. Design and implement a simulated annealing schedule to avoid local minima in a problem.

8. Design and implement A*/beam search to solve a problem, and compare it against other search

algorithms in terms of the solution cost, number of nodes expanded, etc.

9. Apply minimax search with alpha-beta pruning to prune search space in a two-player adversarial

game (e.g., connect four).

10. Compare and contrast genetic algorithms with classic search techniques, explaining when it is most

appropriate to use a genetic algorithm to learn a model versus other forms of optimization (e.g.,

gradient descent).

11. Compare and contrast various heuristic searches vis-a-vis applicability to a given problem.

12. Model a logic or Sudoku puzzle as a constraint satisfaction problem, solve it with backtrack search,

and determine how much arc consistency can reduce the search space.

AI-KRR: Fundamental Knowledge Representation and Reasoning

CS Core:

1. Types of representations

a. Symbolic, logical

i. Creating a representation from a natural language problem statement

b. Learned subsymbolic representations

c. Graphical models (e.g., naive Bayes, Bayesian network)

2. Review of probabilistic reasoning, Bayes theorem (See also: MSF-Probability)

3. Bayesian reasoning

a. Bayesian inference

KA Core:

4. Random variables and probability distributions

a. Axioms of probability

b. Probabilistic inference

c. Bayes’ Rule (derivation)

d. Bayesian inference (more complex examples)

5. Independence

6. Conditional Independence

7. Markov chains and Markov models

8. Utility and decision making

Illustrative Learning Outcomes:

1. Given a natural language problem statement, encode it as a symbolic or logical representation.

2. Explain how we can make decisions under uncertainty, using concepts such as Bayes theorem and

utility.

3. Compute a probabilistic inference in a real-world problem using Bayes’ theorem to determine the

probability of a hypothesis given evidence.

4. Apply Bayes’ rule to determine the probability of a hypothesis given evidence.

9

5. Compute the probability of outcomes and test whether outcomes are independent.

AI-ML: Machine Learning

CS Core:

1. Definition and examples of a broad variety of machine learning tasks

a. Supervised learning

i. Classification

ii. Regression

b. Reinforcement learning

c. Unsupervised learning

i. Clustering

2. Fundamental ideas:

a. No free lunch theorem: no one learner can solve all problems; representational design decisions

have consequences.

b. Sources of error and undecidability in machine learning

3. A simple statistical-based supervised learning such as linear regression or decision trees

a. Focus on how they work without going into mathematical or optimization details; enough to

understand and use existing implementations correctly

4. The overfitting problem/controlling solution complexity (regularization, pruning – intuition only)

a. The bias (underfitting) – variance (overfitting) tradeoff

5. Working with Data

a. Data preprocessing

i. Importance and pitfalls of preprocessing choices

b. Handling missing values (imputing, flag-as-missing)

i. Implications of imputing vs flag-as-missing

c. Encoding categorical variables, encoding real-valued data

d. Normalization/standardization

e. Emphasis on real data, not textbook examples

6. Representations

a. Hypothesis spaces and complexity

b. Simple basis feature expansion, such as squaring univariate features

c. Learned feature representations

7. Machine learning evaluation

a. Separation of train, validation, and test sets

b. Performance metrics for classifiers

c. Estimation of test performance on held-out data

d. Tuning the parameters of a machine learning model with a validation set

e. Importance of understanding what a model is doing, where its pitfalls/shortcomings are, and the

implications of its decisions

8. Basic neural networks

a. Fundamentals of understanding how neural networks work and their training process, without

details of the calculations

b. Basic introduction to generative neural networks (e.g., large language models)

9. Ethics for Machine Learning (See also: SEP-Context)

10

a. Focus on real data, real scenarios, and case studies

b. Dataset/algorithmic/evaluation bias and unintended consequences

KA Core:

10. Formulation of simple machine learning as an optimization problem, such as least squares linear

regression or logistic regression

a. Objective function

b. Gradient descent

c. Regularization to avoid overfitting (mathematical formulation)

11. Ensembles of models

a. Simple weighted majority combination

12. Deep learning

a. Deep feed-forward networks (intuition only, no mathematics)

b. Convolutional neural networks (intuition only, no mathematics)

c. Visualization of learned feature representations from deep nets

d. Other architectures (generative NN, recurrent NN, transformers, etc.)

13. Performance evaluation

a. Other metrics for classification (e.g., error, precision, recall)

b. Performance metrics for regressors

c. Confusion matrix

d. Cross-validation

i. Parameter tuning (grid/random search, via cross-validation)

14. Overview of reinforcement learning methods

15. Two or more applications of machine learning algorithms

a. E.g., medicine and health, economics, vision, natural language, robotics, game play

16. Ethics for Machine Learning

a. Continued focus on real data, real scenarios, and case studies (See also: SEP-Context)

b. Privacy (See also: SEP-Privacy)

c. Fairness (See also: SEP-Privacy)

d. Intellectual property

e. Explainability

Non-core:

17. General statistical-based learning, parameter estimation (maximum likelihood)

18. Supervised learning

a. Decision trees

b. Nearest-neighbor classification and regression

c. Learning simple neural networks / multi-layer perceptrons

d. Linear regression

e. Logistic regression

f. Support vector machines (SVMs) and kernels

g. Gaussian Processes

19. Overfitting

a. The curse of dimensionality

11

b. Regularization (mathematical computations, L2 and L1 regularization)

20. Experimental design

a. Data preparation (e.g., standardization, representation, one-hot encoding)

b. Hypothesis space

c. Biases (e.g., algorithmic, search)

d. Partitioning data: stratification, training set, validation set, test set

e. Parameter tuning (grid/random search, via cross-validation)

f. Performance evaluation

i. Cross-validation

ii. Metric: error, precision, recall, confusion matrix

iii. Receiver operating characteristic (ROC) curve and area under ROC curve

21. Bayesian learning (Cross-Reference AI/Reasoning Under Uncertainty)

a. Naive Bayes and its relationship to linear models

b. Bayesian networks

c. Prior/posterior

d. Generative models

22. Deep learning

a. Deep feed-forward networks

b. Neural tangent kernel and understanding neural network training

c. Convolutional neural networks

d. Autoencoders

e. Recurrent networks

f. Representations and knowledge transfer

g. Adversarial training and generative adversarial networks

h. Attention mechanisms

23. Representations

a. Manually crafted representations

b. Basis expansion

c. Learned representations (e.g., deep neural networks)

24. Unsupervised learning and clustering

a. K-means

b. Gaussian mixture models

c. Expectation maximization (EM)

d. Self-organizing maps

25. Graph analysis (e.g., PageRank)

26. Semi-supervised learning

27. Graphical models (See also: AI-Probability)

28. Ensembles

a. Weighted majority

b. Boosting/bagging

c. Random forest

d. Gated ensemble

29. Learning theory

a. General overview of learning theory / why learning works

12

b. VC dimension

c. Generalization bounds

30. Reinforcement learning

a. Exploration vs exploitation tradeoff

b. Markov decision processes

c. Value and policy iteration

d. Policy gradient methods

e. Deep reinforcement learning

f. Learning from demonstration and inverse RL

31. Explainable / interpretable machine learning

a. Understanding feature importance (e.g., LIME, Shapley values)

b. Interpretable models and representations

32. Recommender systems

33. Hardware for machine learning

a. GPUs / TPUs

34. Application of machine learning algorithms to:

a. Medicine and health

b. Economics

c. Education

d. Vision

e. Natural language

f. Robotics

g. Game play

h. Data mining (Cross-reference DM/Data Analytics)

35. Ethics for Machine Learning

a. Continued focus on real data, real scenarios, and case studies (See also: SEP-Context)

b. In depth exploration of dataset/algorithmic/evaluation bias, data privacy, and fairness (See also:

SEP-Privacy, SEP-Context)

c. Trust / explainability

Illustrative Learning Outcomes:

1. Describe the differences among the three main styles of learning (supervised, reinforcement, and

unsupervised) and determine which is appropriate to a particular problem domain.

2. Differentiate the terms of AI, machine learning, and deep learning.

3. Frame an application as a classification problem, including the available input features and output

to be predicted (e.g., identifying alphabetic characters from pixel grid input).

4. Apply two or more simple statistical learning algorithms to a classification task and measure the

classifiers’ accuracy.

5. Identify overfitting in the context of a problem and learning curves and describe solutions to

overfitting.

6. Explain how machine learning works as an optimization/search process.

7. Implement a statistical learning algorithm and the corresponding optimization process to train the

classifier and obtain a prediction on new data.

8. Describe the neural network training process and resulting learned representations.

13

9. Explain proper ML evaluation procedures, including the differences between training and testing

performance, and what can go wrong with the evaluation process leading to inaccurate reporting of

ML performance.

10. Compare two machine learning algorithms on a dataset, implementing the data preprocessing and

evaluation methodology (e.g., metrics and handling of train/test splits) from scratch.

11. Visualize the training progress of a neural network through learning curves in a well-established

toolkit (e.g., TensorBoard) and visualize the learned features of the network.

12. Compare and contrast several learning techniques (e.g., decision trees, logistic regression, naive

Bayes, neural networks, and belief networks), providing examples of when each strategy is

superior.

13. Evaluate the performance of a simple learning system on a real-world dataset.

14. Characterize the state of the art in learning theory, including its achievements and shortcomings.

15. Explain the problem of overfitting, along with techniques for detecting and managing the problem.

16. Explain the triple tradeoff among the size of a hypothesis space, the size of the training set, and

performance accuracy.

17. Given a real-world application of machine learning, describe ethical issues regarding the choices of

data, preprocessing steps, algorithm selection, and visualization/presentation of results.

AI-SEP: Applications and Societal Impact

Note: There is substantial benefit to studying applications and ethics/fairness/trust/explainability in a

curriculum alongside the methods and theory that they apply to, rather than covering ethics in a

separate, dedicated class session. Whenever possible, study of these topics should be integrated

alongside other modules, such as exploring how decision trees could be applied to a specific problem

in environmental sustainability such as land use allocation, then assessing the

social/environmental/ethical implications of doing so.

CS Core:

1. At least one application of AI to a specific problem and field, such as medicine, health,

sustainability, social media, economics, education, robotics, etc. (choose at least one for the CS

Core).

a. Formulating and evaluating a specific application as an AI problem

i. How to deal with underspecified or ill-posed problems

b. Data availability/scarcity and cleanliness

i. Basic data cleaning and preprocessing

ii. Data set bias

c. Algorithmic bias

d. Evaluation bias

e. Assessment of societal implications of the application

2. Deployed deep generative models

a. High-level overview of deep image generative models (e.g., as of 2023, DALL-E, Midjourney,

Stable Diffusion, etc.), their uses, and their shortcomings/pitfalls.

b. High-level overview of large language models (e.g., as of 2023, ChatGPT, Bard, etc.), their

uses, and their shortcomings/pitfalls.

3. Overview of societal impact of AI

14

a. Ethics (See also: SEP-Context)

b. Fairness (See also: SEP-Privacy, SEP-DEIA)

c. Trust/explainability (See also: SEP-Context)

d. Privacy and usage of training data (See also: SEP-Privacy)

e. Human autonomy and oversight/regulations/legal requirements (See also: SEP-Context)

f. Sustainability (See also: SEP-Sustainability)

KA Core:

4. One or more additional applications of AI to a broad set of problems and diverse fields, such as

medicine, health, sustainability, social media, economics, education, robotics, etc. (choose a

different area from that chosen for the CS Core).

a. Formulating and evaluating a specific application as an AI problem

i. How to deal with underspecified or ill-posed problems

b. Data availability/scarcity and cleanliness

i. Basic data cleaning and preprocessing

ii. Data set bias

c. Algorithmic bias

d. Evaluation bias

e. Assessment of societal implications of the application

5. Additional depth on deployed deep generative models

a. Introduction to how deep image generative models work, (e.g., as of 2023, DALL-E, Midjourney,

Stable Diffusion) including discussion of attention

b. Introduction to how large language models work, (e.g., as of 2023, ChatGPT, Bard) including

discussion of attention

c. Idea of foundational models, how to use them, and the benefits/issues with training them from

big data

6. Analysis and discussion of the societal impact of AI

a. Ethics (See also: SEP-Context)

b. Fairness (See also: SEP-Privacy, SEP-DEIA)

c. Trust/explainability (See also: SEP-Context)

d. Privacy and usage of training data (See also: SEP-Privacy)

e. Human autonomy and oversight/regulations/legal requirements (See also: SEP-Context)

f. Sustainability (See also: SEP-Sustainability)

Illustrative Learning Outcomes:

1. Given a real-world application domain and problem, formulate an AI solution to it, identifying proper

data/input, preprocessing, representations, AI techniques, and evaluation metrics/methodology.

2. Analyze the societal impact of one or more specific real-world AI applications, identifying issues

regarding ethics, fairness, bias, trust, and explainability.

3. Describe some of the failure modes of current deep generative models for language or images, and

how this could affect their use in an application.

AI-LRR: Logical Representation and Reasoning

Non-core:

15

1. Review of propositional and predicate logic (See also: MSF-Discrete)

2. Resolution and theorem proving (propositional logic only)

a. Forward chaining, backward chaining

3. Knowledge representation issues

a. Description logics

b. Ontology engineering

4. Semantic web

5. Non-monotonic reasoning (e.g., non-classical logics, default reasoning)

6. Argumentation

7. Reasoning about action and change (e.g., situation and event calculus)

8. Temporal and spatial reasoning

9. Logic programming

a. Prolog, Answer Set Programming

10. Rule-based Expert Systems

11. Semantic networks

12. Model-based and Case-based reasoning

Illustrative Learning Outcomes:

1. Translate a natural language (e.g., English) sentence into a predicate logic statement.

2. Convert a logic statement into clausal form.

3. Apply resolution to a set of logic statements to answer a query.

4. Compare and contrast the most common models used for structured knowledge representation,

highlighting their strengths and weaknesses.

5. Identify the components of non-monotonic reasoning and its usefulness as a representational

mechanism for belief systems.

6. Compare and contrast the basic techniques for representing uncertainty.

7. Compare and contrast the basic techniques for qualitative representation.

8. Apply situation and event calculus to problems of action and change.

9. Explain the distinction between temporal and spatial reasoning, and how they interrelate.

10. Explain the difference between rule-based, case-based, and model-based reasoning techniques.

11. Define the concept of a planning system and how it differs from classical search techniques.

12. Describe the differences between planning as search, operator-based planning, and propositional

planning, providing examples of domains where each is most applicable.

13. Explain the distinction between monotonic and non-monotonic inference.

AI-Probability: Probabilistic Representation and Reasoning

Non-core:

1. Conditional Independence review

2. Knowledge representations

a. Bayesian Networks

i. Exact inference and its complexity

ii. Markov blankets and d-separation

iii. Randomized sampling (Monte Carlo) methods (e.g., Gibbs sampling)

b. Markov Networks

16

c. Relational probability models

d. Hidden Markov Models

3. Decision Theory

a. Preferences and utility functions

b. Maximizing expected utility

c. Game theory

Illustrative Learning Outcomes:

1. Compute the probability of a hypothesis given the evidence in a Bayesian network.

2. Explain how conditional independence assertions allow for greater efficiency of probabilistic

systems.

3. Identify examples of knowledge representations for reasoning under uncertainty.

4. State the complexity of exact inference. Identify methods for approximate inference.

5. Design and implement at least one knowledge representation for reasoning under uncertainty.

6. Describe the complexities of temporal probabilistic reasoning.

7. Design and implement an HMM as one example of a temporal probabilistic system.

8. Describe the relationship between preferences and utility functions.

9. Explain how utility functions and probabilistic reasoning can be combined to make rational

decisions.

AI-Planning: Planning

Non-core:

1. Review of propositional and first-order logic

2. Planning operators and state representations

3. Total order planning

4. Partial-order planning

5. Plan graphs and GraphPlan

6. Hierarchical planning

7. Planning languages and representations

a. PDDL

8. Multi-agent planning

9. MDP-based planning

10. Interconnecting planning, execution, and dynamic replanning

a. Conditional planning

b. Continuous planning

c. Probabilistic planning

Illustrative Learning Outcomes:

1. Construct the state representation, goal, and operators for a given planning problem.

2. Encode a planning problem in PDDL and use a planner to solve it.

3. Given a set of operators, initial state, and goal state, draw the partial-order planning graph and

include ordering constraints to resolve all conflicts.

4. Construct the complete planning graph for GraphPlan to solve a given problem.

17

AI-Agents: Agents and Cognitive Systems

Non-core:

1. Agent architectures (e.g., reactive, layered, cognitive)

2. Agent theory (including mathematical formalisms)

3. Rationality, Game Theory

a. Decision-theoretic agents

b. Markov decision processes (MDP)

c. Bandit algorithms

4. Software agents, personal assistants, and information access

a. Collaborative agents

b. Information-gathering agents

c. Believable agents (synthetic characters, modeling emotions in agents)

5. Learning agents

6. Cognitive systems

a. Cognitive architectures (e.g., ACT-R, SOAR, ICARUS, FORR)

b. Capabilities (e.g., perception, decision making, prediction, knowledge maintenance)

c. Knowledge representation, organization, utilization, acquisition, and refinement

d. Applications and evaluation of cognitive systems

7. Multi-agent systems

a. Collaborating agents

b. Agent teams

c. Competitive agents (e.g., auctions, voting)

d. Swarm systems and biologically inspired models

e. Multi-agent learning

8. Human-agent interaction (See also: HCI-User, HCI-Accessibility)

a. Communication methodologies (verbal and non-verbal)

b. Practical issues

c. Applications

i. Trading agents, supply chain management

ii. Ethical issues of AI interactions with humans

iii. Regulation and legal requirements of AI systems for interacting with humans

Illustrative Learning Outcomes:

1. Characterize and contrast the standard agent architectures.

2. Describe the applications of agent theory to domains such as software agents, personal assistants,

and believable agents, and discuss associated ethical implications.

3. Describe the primary paradigms used by learning agents.

4. Demonstrate using appropriate examples how multi-agent systems support agent interaction.

5. Construct an intelligent agent using a well-established cognitive architecture (ACT-R, SOAR) for

solving a specific problem.

AI-NLP: Natural Language Processing

Non-core:

18

1. Deterministic and stochastic grammars

2. Parsing algorithms

a. CFGs and chart parsers (e.g., CYK)

b. Probabilistic CFGs and weighted CYK

3. Representing meaning/Semantics

a. Logic-based knowledge representations

b. Semantic roles

c. Temporal representations

d. Beliefs, desires, and intentions

4. Corpus-based methods

5. N-grams and HMMs

6. Smoothing and backoff

7. Examples of use: POS tagging and morphology

8. Information retrieval (See also: DM-Unstructured)

a. Vector space model

i. TF & IDF

b. Precision and recall

9. Information extraction

10. Language translation

11. Text classification, categorization

a. Bag of words model

12. Deep learning for NLP (See also: AI-ML)

a. RNNs

b. Transformers

c. Multi-modal embeddings (e.g., images + text)

d. Generative language models

Illustrative Learning Outcomes:

1. Define and contrast deterministic and stochastic grammars, providing examples to show the

adequacy of each.

2. Simulate, apply, or implement classic and stochastic algorithms for parsing natural language.

3. Identify the challenges of representing meaning.

4. List the advantages of using standard corpora. Identify examples of current corpora for a variety of

NLP tasks.

5. Identify techniques for information retrieval, language translation, and text classification.

6. Implement a TF/IDF transform, use it to extract features from a corpus, and train an off-the-shelf

machine learning algorithm using those features to do text classification.

AI-Robotics: Robotics

(See also: SPD-Robot)

Non-core:

1. Overview: problems and progress

a. State-of-the-art robot systems, including their sensors and an overview of their sensor

processing

19

b. Robot control architectures, e.g., deliberative vs reactive control and Braitenberg vehicles

c. World modeling and world models

d. Inherent uncertainty in sensing and in control

2. Sensors and effectors

a. Sensors: e.g., LIDAR, sonar, vision, depth, stereoscopic, event cameras, microphones, haptics,

b. Effectors: e.g., wheels, arms, grippers

3. Coordinate frames, translation, and rotation (2D and 3D)

4. Configuration space and environmental maps

5. Interpreting uncertain sensor data

6. Localization and mapping

7. Navigation and control

8. Forward and inverse kinematics

9. Motion path planning and trajectory optimization

10. Manipulation and grasping

11. Joint control and dynamics

12. Vision-based control

13. Multiple-robot coordination and collaboration

14. Human-robot interaction (See also: HCI-User, HCI-Accessibility)

a. Shared workspaces

b. Human-robot teaming and physical HRI

c. Social assistive robots

d. Motion/task/goal prediction

e. Collaboration and communication (explicit vs implicit, verbal or symbolic vs non-verbal or visual)

f. Trust

15. Applications and Societal, Economic, and Ethical Issues

a. Societal, economic, right-to-work implications

b. Ethical and privacy implications of robotic applications

c. Liability in autonomous robotics

d. Autonomous weapons and ethics

e. Human oversight and control

Illustrative Learning Outcomes:

(Note: Due to the expense of robot hardware, all of these could be done in simulation or

with low-cost educational robotic platforms.)

1. List capabilities and limitations of today's state-of-the-art robot systems, including their sensors and

the crucial sensor processing that informs those systems.

2. Integrate sensors, actuators, and software into a robot designed to undertake a specific task.

3. Program a robot to accomplish simple tasks using deliberative, reactive, and/or hybrid control

architectures.

4. Implement fundamental motion planning algorithms within a robot configuration space.

5. Characterize the uncertainties associated with common robot sensors and actuators; articulate

strategies for mitigating these uncertainties.

6. List the differences among robots' representations of their external environment, including their

strengths and shortcomings.

20

7. Compare and contrast at least three strategies for robot navigation within known and/or unknown

environments, including their strengths and shortcomings.

8. Describe at least one approach for coordinating the actions and sensing of several robots to

accomplish a single task.

9. Compare and contrast a multi-robot coordination and a human-robot collaboration approach and

attribute their differences to differences between the problem settings.

10. Analyze the societal, economic, and ethical issues of a real-world robotics application.

AI-Vision: Perception and Computer Vision

Non-core:

1. Computer vision

a. Image acquisition, representation, processing, and properties

b. Shape representation, object recognition, and segmentation

c. Motion analysis

d. Generative models

2. Audio and speech recognition

3. Touch and proprioception

4. Other modalities (e.g., olfaction)

5. Modularity in recognition

6. Approaches to pattern recognition (See also: AI-ML)

a. Classification algorithms and measures of classification quality

b. Statistical techniques

c. Deep learning techniques

Illustrative Learning Outcomes:

1. Summarize the importance of image and object recognition in AI and indicate several significant

applications of this technology.

2. List at least three image-segmentation approaches, such as thresholding, edge-based and region-

based algorithms, along with their defining characteristics, strengths, and weaknesses.

3. Implement 2d object recognition based on contour-based and/or region-based shape

representations.

4. Distinguish the goals of sound-recognition, speech-recognition, and speaker-recognition and

identify how the raw audio signal will be handled differently in each of these cases.

5. Provide at least two examples of a transformation of a data source from one sensory domain to

another, e.g., tactile data interpreted as single-band 2d images.

6. Implement a feature-extraction algorithm on real data, e.g., an edge or corner detector for images

or vectors of Fourier coefficients describing a short slice of audio signal.

7. Implement an algorithm combining features into higher-level percepts, e.g., a contour or polygon

from visual primitives or phoneme hypotheses from an audio signal.

8. Implement a classification algorithm that segments input percepts into output categories and

quantitatively evaluates the resulting classification.

9. Evaluate the performance of the underlying feature-extraction, relative to at least one alternative

possible approach (whether implemented or not) in its contribution to the classification task (8),

above.

21

10. Describe at least three classification approaches, their prerequisites for applicability, their strengths,

and their shortcomings.

11. Implement and evaluate a deep learning solution to problems in computer vision, such as object or

scene recognition.

Professional Dispositions

● Meticulousness: Since attention must be paid to details when implementing AI and machine

learning algorithms, students must be meticulous about detail.

● Persistence: AI techniques often operate in partially observable environments and optimization

processes may have cascading errors from multiple iterations. Getting AI techniques to work

predictably takes trial and error, and repeated effort. These call for persistence on the part of the

student.

● Inventive: Applications of AI involve creative problem formulation and application of AI techniques,

while balancing application requirements and societal and ethical issues.

● Responsible: Applications of AI can have significant impacts on society, affecting both individuals

and large populations. This calls for students to understand the implications of work in AI to society,

and to make responsible choices for when and how to apply AI techniques.

Mathematics Requirements

Required:

● Algebra

● Precalculus

● Discrete Math (See also: MSF-Discrete)

o sets, relations, functions, graphs

o predicate and first-order logic, logic-based proofs

● Linear Algebra (See also: MSF-Linear)

o Matrix operations, matrix algebra

o Basis sets

● Probability and Statistics (See also: MSF-Statistics)

o Basic probability theory, conditional probability, independence

o Bayes theorem and applications of Bayes theorem

o Expected value, basic descriptive statistics, distributions

o Basic summary statistics and significance testing

o All should be applied to real decision-making examples with real data, not “textbook”

examples.

Desirable:

● Calculus-based probability and statistics

● Calculus: single-variable and partial derivatives

● Other topics in probability and statistics

o Hypothesis testing, data resampling, experimental design techniques

22

● Optimization

● Linear algebra (all other topics)

Course Packaging Suggestions

Artificial Intelligence to include the following:

● AI-Introduction (4 hours)

● AI-Search (9 hours)

● AI-KRR (4 hours)

● AI-ML (12 hours)

● AI-Probability (5 hours)

● AI-SEP (4 hours –integrated throughout the course)

Prerequisites:

● SDF-Fundamentals

● SDF-Data-Structures

● SDF-Algorithms

● MSF-Discrete

● MSF-Probability

Course objective: A student who completes this course should understand the basic areas of AI and

be able to understand, develop, and apply techniques in each. They should be able to solve problems

using search techniques, basic Bayesian reasoning, and simple machine learning methods. They

should understand the various applications of AI and associated ethical and societal implications.

Machine Learning to include the following:

● AI-ML (32 hours)

● AI-KRR (4 hours)

● AI-NLP (4 hours – selected topics, e.g., TF-IDF, bag of words, and text classification)

● AI-SEP (4 hours – should be integrated throughout the course)

Prerequisites:

● SDF-Fundamentals

● SDF-Data-Structures

● SDF-Algorithms

● MSF-Discrete

● MSF-Probability

● MSF-Statistics

● MSF-Linear (optional)

Course objective: A student who completes this course should be able to understand, develop, and

apply mechanisms for supervised, unsupervised, and reinforcement learning. They should be able to

select the proper machine learning algorithm for a problem, preprocess the data appropriately, apply

proper evaluation techniques, and explain how to interpret the resulting models, including the model's

shortcomings. They should be able to identify and compensate for biased data sets and other sources

of error and be able to explain ethical and societal implications of their application of machine learning

to practical problems.

23

Robotics to include the following:

● AI-Robotics (25 hours)

● SPD-Robot (4 hours – focusing on hardware, constraints/considerations, and software

architectures; other topics in SPD/Robot Platforms that overlap with AI/Robotics)

● AI-Search (4 hours – selected topics well-integrated with robotics, e.g., A* and path search)

● AI-ML (6 hours – selected topics well-integrated with robotics, e.g., neural networks for object

recognition)

● AI-SEP (3 hours – integrated throughout the course; robotics is already a huge application, so

this really should focus on societal impact and specific robotic applications).

Prerequisites:

● SDF-Fundamentals

● SDF-Data-Structures

● SDF-Algorithms

● MSF-Linear

Course objective: A student who completes this course should be able to understand and use robotic

techniques to perceive the world using sensors, localize the robot based on features and a map, and

plan paths and navigate in the world in simple robot applications. They should understand and be able

to apply simple computer vision, motion planning, and forward and inverse kinematics techniques.

Introduction to Data Science to include the following:

● GIT-Visualization (6 hours) – types of visualization, libraries, foundations

● GIT-SEP (2 hours) – ethically responsible visualization

● DM-Core (2 hours) – Parallel and distributed processing (MapReduce, cloud frameworks, etc.)–

● DM-Modeling (2 hours) – Graph representations, entity resolution

● DM-Querying (4 hours) – SQL, query formation

● DM-NoSQL (2 hours) – Graph DBs, data lakes, data consistency

● DM-Security (2 hours) – privacy, personally identifying information and its protection

● DM-Analytics (1 hour) – exploratory data techniques, data science lifecycle

● DM-SEP (2 hours) – Data provenance

● AI-ML (15 hours) – Data preprocessing, missing data imputation, supervised/semi-

supervised/unsupervised learning, text analysis, graph analysis and PageRank, experimental

methodology, evaluation, and ethics

● AI-SEP (3 hours) – Applications specific to data science, interspersed throughout the course

● MSF-Statistics (3 hours) – Statistical analysis, hypothesis testing, experimental design

Prerequisites:

● SDF-Fundamentals

Course objective: A student who completes this course should be able to formulate questions as data

analysis problems, understand and use statistical techniques to achieve that analysis from real data,

apply visualization techniques to convey the results, and analyze the ethical and societal implications of

data science applications. Students should also be able to understand and effectively use data

management techniques for preprocessing, storage, security, and retrieval of data in current systems.

24

Committee

Chair: Eric Eaton, University of Pennsylvania, Philadelphia, PA, USA

Members:

● Zachary Dodds, Harvey Mudd College, Claremont, CA, USA

● Susan L. Epstein, Hunter College and The Graduate Center of The City University of New York,

New York, NY, USA

● Laura Hiatt, US Naval Research Laboratory, Washington, DC, USA

● Amruth N. Kumar, Ramapo College of New Jersey, Mahwah, NJ, USA

● Peter Norvig, Google, Mountain View, CA, USA

● Meinolf Sellmann, GE Research, Niskayuna, NY, USA

● Reid Simmons, Carnegie Mellon University, Pittsburgh, PA, USA

Contributors:

● Nate Derbinsky, Northeastern University, Boston, MA, USA

● Eugene Freuder, Insight Centre for Data Analytics, University College Cork, Cork, Ireland

● Ashok Goel, Georgia Institute of Technology, Atlanta, GA, USA

● Claudia Schulz, Thomson Reuters, Zurich, Switzerland

25

Algorithmic Foundations (AL)

Preamble

Algorithms and data structures are fundamental to computer science, since every theoretical

computation and applied program consists of algorithms that operate on data elements possessing

some underlying structure. Selecting appropriate computational solutions to real-world problems

benefits from understanding the theoretical and practical capabilities and limitations of available

algorithms and paradigms, including their impact on the environment and society. Moreover, this

understanding provides insight into the intrinsic nature of computation, computational problems, and

computational problem-solving as well as possible solution techniques independent of programming

language, programming paradigm, computer hardware, or other implementation aspects.

This knowledge area focuses on the nature of computation including the concepts and skills required to

design and analyze algorithms for solving real-world computational problems. It complements the

implementation of algorithms and data structures found in the Software Development Foundations

(SDF) knowledge area. As algorithms and data structures are essential in all advanced areas of

computer science, this area provides the algorithmic foundations that every computer science graduate

is expected to know. Exposure to the breadth of these foundational AL topics is designed to provide

students with the basis for studying these topics in more depth, for studying additional computation and

algorithm topics, and for learning advanced algorithms across a variety of CS knowledge areas and

CS+X disciplines.

Changes since CS2013

This area has been renamed from Algorithms and Complexity to better reflect its foundational scope

since topics in this area focus on the practical and theoretical foundations of algorithms, complexity,

and computability. These topics also provide the foundational prerequisites for advanced study in

computer science. Additionally, topics focused on complexity and computability have been cleanly

separated into respective knowledge units. To reinforce the important impact of computation on society,

a Society, Ethics, and the Profession (AL-SEP) knowledge unit has been added with the expectation

that SEP implications be addressed in some manner during every lecture hour of focus in this AL

knowledge area.

The increase of four CS Core hours acknowledges the importance of this foundational area in the CS

curriculum and returns it to the 2001 level (less than one course). Despite this increase, there is a

significant overlap in hours with the Software Development Fundamentals (SDF) and Mathematical

Foundations (MSF) areas. There is also a complementary nature of the units in this area since, for

example, while linear search of an array covers topics in AL-Foundational, it can be used to

simultaneously explain AL-Complexity O(n) and AL-Strategies Brute-Force topics.

The KA topics and hours primarily reflect topics studied in a stand-alone computational theory course

and the availability of additional hours when such a course is included in the curriculum.

26

Core Hours

Knowledge Unit CS Core KA Core

Foundational Data Structures and Algorithms 11 6

Algorithmic Strategies 6

Complexity Analysis 6 3

Computational Models and Formal Languages 9 23

Society, Ethics, and the Profession Included in SEP hours

Total 32 32

The 11 CS Core hours in Foundational Data Structures and Algorithms are in addition to 9

hours counted in SDF and 3 hours counted in MSF.

Knowledge Units

AL-Foundational: Foundational Data Structures and Algorithms

CS Core: (See also: SDF-Data-Structures, SDF-Algorithms)

1. Abstract Data Type (ADT) and operations on an ADT (See also: FPL-Types)

a. Dictionary operations (insert, delete, find)

2. Arrays

a. Numeric vs non-numeric, character strings

b. Single (vector) vs multidimensional (matrix)

3. Records/Structs/Tuples and Objects (See also: FPL-OOP)

4. Linked lists (for historical reasons)

a. Single vs Double and Linear vs Circular

5. Stacks

6. Queues and deques

a. Heap-based priority queue

7. Hash tables/maps

a. Collision resolution and complexity (e.g., probing, chaining, rehash)

8. Graphs (e.g., [un]directed, [a]cyclic, [un]connected, and [un]weighted)

(See also: MSF-Discrete)

a. Graph representation: adjacency list vs matrix

9. Trees (See also: MSF-Discrete)

a. Binary, n-ary, and search trees

b. Balanced (e.g., AVL, Red-Black, Heap)

https://docs.google.com/document/d/1rzOUsZrYi_g1IiH9zqWfW4UYAttrNKYY/edit
https://csed.acm.org/wp-content/uploads/2023/09/MSF-Version-Gamma-V3.pdf

27

10. Sets (See also: MSF-Discrete)

11. Search algorithms

a. O(n) complexity (e.g., linear/sequential array/list search)

b. O(log2 n) complexity (e.g., binary search)

c. O(logb n) complexity (e.g., uninformed depth/breadth-first tree search)

12. Sorting algorithms (e.g., stable, unstable)

a. O(n2) complexity (e.g., insertion, selection),

b. O(n log n) complexity (e.g., quicksort, merge, timsort)

13. Graph algorithms

a. Shortest path (e.g., Dijkstra’s, Floyd’s)

b. Minimal spanning tree (e.g., Prim’s, Kruskal’s)

KA Core:

14. Sorting algorithms

a. O(n log n) complexity heapsort

b. Pseudo O(n) complexity (e.g., bucket, counting, radix)

15. Graph algorithms

a. Transitive closure (e.g., Warshall’s)

b. Topological sort

16. Matching

a. Efficient string matching (e.g., Boyer-Moore, Knuth-Morris-Pratt)

b. Longest common subsequence matching

c. Regular expression matching

Non-core:

17. Cryptography algorithms (e.g., SHA-256) (See also: SEC-Crypto)

18. Parallel algorithms (See also: PDC-Algorithms, FPL-Parallel)

19. Consensus algorithms (e.g., Blockchain) (See also: SEC-Crypto)

a. Proof of work vs proof of stake (See also: SEP-Sustainability)

20. Quantum computing algorithms (See also: AL-Models, AR-Quantum)

a. Oracle-based (e.g., Deutsch-Jozsa, Bernstein-Vazirani, Simon)

b. Superpolynomial speed-up via QFT (e.g., Shor’s)

c. Polynomial speed-up via amplitude amplification (e.g., Grover’s)

21. Fast-Fourier Transform (FFT) algorithm

22. Differential evolution algorithm

Illustrative Learning Outcomes:

CS Core:

1. For each ADT/Data-Structure in this unit

a. Explain its definition, properties, representation(s), and associated ADT operations.

b. Explain step-by-step how the ADT operations associated with the data structure transform it.

2. For each algorithm in this unit explain step-by-step how the algorithm operates.

3. For each algorithmic approach (e.g., sorting) in this unit apply a prototypical example of the

approach (e.g., merge sort).

28

4. Given requirements for a problem, develop multiple solutions using various data structures and

algorithms. Subsequently, evaluate the suitability, strengths, and weaknesses selecting an

approach that best satisfies the requirements.

5. Explain how collision avoidance and collision resolution is handled in hash tables.

6. Explain factors beyond computational efficiency that influence the choice of algorithms, such as

programming time, maintainability, and the use of application-specific patterns in the input data.

7. Explain the heap property and the use of heaps as an implementation of a priority queue.

KA Core:

8. For each of the algorithms and algorithmic approaches in the KA Core topics:

a. Explain a prototypical example of the algorithm, and

b. Explain step-by-step how the algorithm operates.

Non-core:

9. An appreciation of quantum computation and its application to certain problems.

AL-Strategies: Algorithmic Strategies

CS Core:

1. Paradigms

a. Brute-Force (e.g., linear search, selection sort, traveling salesperson, knapsack)

b. Decrease-and-Conquer

i. By a Constant (e.g., insertion sort, topological sort),

ii. By a Constant Factor (e.g., binary search),

iii. By a Variable Size (e.g., Euclid’s)

c. Divide-and-Conquer (e.g., binary search, quicksort, mergesort, Strassen’s)

d. Greedy (e.g., Dijkstra’s, Kruskal’s, Knapsack)

e. Transform-and-Conquer

i. Instance simplification (e.g., find duplicates via list presort)

ii. Representation change (e.g., heapsort)

iii. Problem reduction (e.g., least-common-multiple, linear programming)

iv. Dynamic programming (e.g., Floyd’s, Warshall, Bellman-Ford)

f. Space vs time tradeoffs (e.g., hashing)

2. Handling exponential growth (e.g., heuristic A*, branch-and-bound, backtracking)

3. Iteration vs recursion (e.g., factorial, tree search)

KA Core:

4. Paradigms

a. Approximation algorithms

b. Iterative improvement (e.g., Ford-Fulkerson, simplex)

c. Randomized/Stochastic algorithms (e.g., max-cut, balls and bins)

Non-core:

5. Quantum computing

29

Illustrative Learning Outcomes:

CS Core:

1. For each of the paradigms in this unit,

a. Explain its definitional characteristics,

b. Explain an example that demonstrates the paradigm including how this example satisfies the

paradigm’s characteristics.

2. For each of the algorithms in the AL-Foundational unit, explain the paradigm used by the algorithm

and how it exemplifies this paradigm.

3. Given an algorithm, explain the paradigm used by the algorithm and how it exemplifies this

paradigm.

4. Give a real-world problem, evaluate appropriate algorithmic paradigms and algorithms from these

paradigms that address the problem including evaluating the tradeoffs among the paradigms and

algorithms selected.

5. Give examples of iterative and recursive algorithms that solve the same problem, explain the

benefits and disadvantages of each approach.

6. Evaluate whether a greedy approach leads to an optimal solution.

7. Explain various approaches for addressing computational problems whose algorithmic solutions are

exponential.

AL-Complexity: Complexity

CS Core:

1. Complexity Analysis Framework

a. Best, average, and worst-case performance of an algorithm

b. Empirical and relative (Order of Growth) measurements

c. Input size and primitive operations

d. Time and space efficiency

2. Asymptotic complexity analysis (average and worst-case bounds)

a. Big-O, Big-Omega, and Big-Theta formal notations

b. Foundational Complexity Classes and Representative Examples/Problems

i. O(1) Constant (e.g., array access)

ii. O(log2 n) Logarithmic (e.g., binary search)

iii. O(n) Linear (e.g., linear search)

iv. O(n log2 n) Log Linear (e.g., mergesort)

v. O(n2) Quadratic (e.g., selection sort)

vi. O(nc) Polynomial (e.g., O(n3) Gaussian elimination)

vii. O(2n) Exponential (e.g., Knapsack, Satisfiability (SAT),

Traveling Sales-Person (TSP), all subsets)

viii. O(n!) Factorial (e.g., Hamiltonian circuit, all permutations)

3. Empirical measurements of performance

4. Tractability and intractability

a. P, NP, and NP-Complete Complexity Classes

b. NP-Complete Problems (e.g., SAT, Knapsack, TSP)

c. Reductions

5. Time and space tradeoffs in algorithms

30

KA Core:

6. Little-o, Little-Omega, and Little Theta notations

7. Formal recursive analysis

8. Amortized analysis

9. Turing Machine-based models of complexity

a. Time complexity

i. P, NP, NP-C, and EXP classes

ii. Cook-Levin theorem

b. Space Complexity

i. NSpace and PSpace

ii. Savitch’s theorem

Illustrative Learning Outcomes:

CS Core:

1. Prepare a presentation that explains to first year students the basic concepts of algorithmic

complexity including best, average, and worst-case algorithm behavior, Big- O, Omega, and Theta

notations, complexity classes, time and space tradeoffs, empirical measurement, and impact on

practical problems.

2. Using examples, explain each of the foundational complexity classes in this unit.

3. For each foundational complexity class in this unit, explain an algorithm that demonstrates the

associated runtime complexity.

4. For each algorithm in the AL-Foundational unit, explain its runtime complexity class and why it

belongs to this class.

5. Informally evaluate the foundational complexity class of simple algorithms.

6. Given a problem to program for which there may be several algorithmic approaches, evaluate them

and determine which are feasible, and select one that is optimal in implementation and run-time

behavior.

7. Develop empirical studies to determine and validate hypotheses about the runtime complexity of

various algorithms by running algorithms on input of various sizes and comparing actual

performance to the theoretical analysis.

8. Explain examples that illustrate time-space tradeoffs of algorithms.

9. Explain how tree balance affects the efficiency of binary search tree operations.

10. Explain to a non-technical audience the significance of tractable versus intractable algorithms using

an intuitive explanation of Big-O complexity.

11. Explain the significance of NP-Completeness.

12. Explain how NP-Hard is a lower bound and NP is an upper bound for NP-Completeness.

13. Explain examples of NP-complete problems.

KA Core:

14. Use recurrence relations to evaluate the time complexity of recursively defined algorithms.

15. Apply elementary recurrence relations using a form of the Master Theorem.

16. Apply Big-O notation to give upper case bounds on time/space complexity of algorithms.

17. Explain the Cook-Levin Theorem and the NP-Completeness of SAT.

31

18. Explain the classes P and NP.

19. Prove that a problem is NP-Complete by reducing a classic known NP-C problem to it (e.g., 3SAT

and Clique).

20. Explain the P-space class and its relation to the EXP class.

AL-Models: Computational Models and Formal Languages

CS Core:

1. Formal automata

a. Finite State

b. Pushdown

c. Linear Bounded

d. Turing Machine

2. Formal languages, grammars and Chomsky Hierarchy

 (See also: FPL-Translation, FPL-Syntax)

a. Regular (Type-3)

i. Regular Expressions

b. Context-Free (Type-2)

c. Context-Sensitive (Type-1)

d. Recursively Enumerable (Type-0)

3. Relations among formal automata, languages, and grammars

4. Decidability, (un)computability, and halting

5. The Church-Turing thesis

6. Algorithmic correctness

a. Invariants (e.g., in iteration, recursion, tree search)

KA Core:

7. Deterministic and nondeterministic automata

8. Pumping Lemma proofs

a. Proof of Finite State/Regular-Language limitation

b. Pushdown Automata/Context-Free-Language limitation

9. Decidability

a. Arithmetization and diagonalization

10. Reducibility and reductions

11. Time complexity based on Turing Machine

12. Space complexity (e.g., Pspace, Savitch’s Theorem)

13. Equivalent models of algorithmic computation

a. Turing Machines and Variations (e.g., multi-tape, non-deterministic)

b. Lambda Calculus (See also: FPL-Functional)

c. Mu-Recursive Functions

Non-core:

14. Quantum computation (See also: AR-Quantum)

a. Postulates of quantum mechanics

i. State space

32

ii. State evolution

iii. State composition

iv. State measurement

b. Column vector representations of qubits

c. Matrix representations of quantum operations

d. Simple quantum gates (e.g., XNOT, CNOT)

Illustrative Learning Outcomes:

CS Core:

1. For each formal automaton in this unit:

a. Explain its definition comparing its characteristics with this unit’s other automata,

b. Using an example, explain step-by-step how the automaton operates on input including whether

it accepts the associated input,

c. Explain an example of inputs that can and cannot be accepted by the automaton.

2. Given a problem, develop an appropriate automaton that addresses the problem.

3. Develop a regular expression for a given regular language expressed in natural language.

4. Explain the difference between regular expressions (Type-3 acceptors) and the regular expressions

(Type-2 acceptors) used in programming languages.

5. For each formal model in this unit:

a. Explain its definition comparing its characteristics with the others in this unit,

b. Explain example inputs that are and cannot be accepted by the language/grammar.

6. Explain a universal Turing Machine and its operation.

7. Present to an audience of co-workers and managers the impossibility of providing them a program

that checks all other programs, including some seemingly simple ones, for infinite loops including

an explanation of the Halting problem, why it has no algorithmic solution, and its significance for

real-world algorithmic computation.

8. Explain examples of classic uncomputable problems.

9. Explain the Church-Turing Thesis and its significance for algorithmic computation.

10. Explain how (loop) invariants can be used to prove the correctness of an algorithm.

Illustrative Learning Outcomes:

KA Core:

11. For each formal automaton in this unit explain (compare/contrast) its deterministic and

nondeterministic capabilities.

12. Apply pumping lemmas, or alternative means, to prove the limitations of Finite State and Pushdown

automata.

13. Apply arithmetization and diagonalization to prove the Halting Problem for Turing Machines is

Undecidability.

14. Given a known undecidable language, apply a mapping reduction or computational history to prove

that another language is undecidable.

15. Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and

regular expressions, and between PDAs and CFGs.

16. Explain Rice’s theorem and its significance.

33

17. Explain an example proof of a problem that is uncomputable by reducing a classic known

uncomputable problem to it.

18. Explain the Primitive and General Recursive functions (zero, successor, selection, primitive

recursion, composition, and Mu), their significance, and Turing Machine implementations.

19. Explain how computation is performed in Lambda Calculus (e.g., Alpha conversion and Beta

reduction)

Non-core:

20. For a quantum system give examples that explain the following postulates.

a. State Space – system state represented as a unit vector in Hilbert space,

b. State Evolution – the use of unitary operators to evolve system state,

c. State Composition – the use of tensor product to compose systems states,

d. State Measurement – the probabilistic output of measuring a system state.

21. Explain the operation of a quantum XNOT or CNOT gate on a quantum bit represented as a matrix

and column vector, respectively.

AL-SEP: Society, Ethics, and the Profession

CS Core: (See also: SEP-Context, SEP-Sustainability)

1. Social, ethical, and secure algorithms

2. Algorithmic fairness

3. Anonymity (e.g., Differential Privacy)

4. Accountability/Transparency

5. Responsible algorithms

6. Economic and other impacts of inefficient algorithms

7. Sustainability

KA Core:

8. Context aware computing

Illustrative Learning Outcomes:

CS Core:

1. Develop algorithmic solutions to real-world societal problems, such as routing an ambulance to a

hospital.

2. Explain the impact that an algorithm may have on the environment and society when used to solve

a real-world problem while considering its sustainability and that it can affect different societal

groups in different ways.

3. Prepare a presentation that justifies the selection of appropriate data structures and/or algorithms to

solve a given real-world problem.

4. Explain an example that articulates how differential privacy protects knowledge of an individual’s

data.

5. Explain the environmental impacts of design choices that relate to algorithm design.

6. Explain the tradeoffs involved in proof-of-work and proof-of-stake algorithms.

34

Professional Dispositions

● Meticulous: As an algorithm is a formal solution to a computational problem, attention to detail

is important when developing and combining algorithms.

● Persistent: As developing algorithmic solutions to computational problems can be challenging,

computer scientists must be resolute in pursuing such solutions.

● Inventive: As computer scientists develop algorithmic solutions to real-world problems, they

must be inventive in developing solutions to these problems.

Mathematics Requirements

Required:

● MSF-Discrete

Course Packaging Suggestions

As depicted in the following figure, the committee envisions two common approaches for addressing

foundational AL topics in CS courses. Both approaches included the required introductory

Programming (CS1) and Data Structures (CS2) courses. In a three-course approach, all CS Core

topics are covered with additional unused hours to cover other topics. Alternatively, in the four-course

approach, the AL-Model knowledge unit CS and KA Core topics are addressed in a Computational

Theory focused course, which leaves room to address additional KA topics in the third Algorithms

course. Both approaches assume Big-O analysis is introduced in the Data Structures (CS2) course and

that graphs are taught in the third Algorithms course. The committee recognizes that there are many

different approaches for packaging AL topics into courses including, for example, introducing graphs in

CS2 Data Structures, backtracking in an AI course, and AL-Model topics in a theory course that also

addresses, for instance, FPL topics. The given example is simply one way to cover the entire AL CS

Core in three introductory courses with additional lecture hours to spare.

Courses Common to Three and Four Course Exemplars

Programming 1 (CS1)

● AL-Foundational (2 hours)

○ Arrays and Strings

○ Search Algorithms (e.g., O(n) Linear Search)

35

● AL-SEP (In SEP hours)

 Note: the following AL topics are demonstrated in CS1, but not explicitly taught as such:

● AL-Strategies (less than hour)

○ Brute Force (e.g., linear search)

○ Iteration (e.g., linear search)

● AL-Complexity (less than 1 hour)

○ Foundational Complexity Classes

■ O(1) Constant and O(n) Linear runtime complexities

Course objectives: Students should be able to explain, evaluate, and apply arrays in a variety of

problem-solving contexts including using linear search for elements in an array. They should also be

able to begin to explain the impact algorithmic design and use has on society.

Data Structures (CS2)

● AL-Foundational (12 hours)

○ Abstract Data Types and Operations (ADTs)

○ Binary Search

○ Multi-dimensional Arrays

○ Linked Lists

○ Hash Tables/Maps including conflict resolution strategies

○ Records/Structs/Tuples and Objects

○ Sets

○ Stacks, Queues, and Deques

○ Trees: Binary, Ordered, Breadth- and Depth-first search

○ Search Algorithms (e.g., O(n2) Selection Sort, O(log2 n) binary search)

○ Sorting Algorithms (e.g., O(n log n) Mergesort, O(logb n) tree search)

● AL-Strategies (3 hours)

○ Brute Force (e.g., selection sort)

○ Decrease-and-Conquer (e.g., depth/breadth tree search)

○ Divide-and-Conquer (e.g., mergesort, quicksort)

○ Iteration vs Recursion (e.g., factorial, tree search)

○ Space vs Time tradeoff (e.g., hashing)

● AL-Complexity (3 hours)

○ Complexity Analysis Framework

○ Foundational Complexity Classes

■ O(log2 n) Logarithmic, O(n log2 n) Log Linear, and O(n2) Quadratic

○ Time and Space Tradeoffs in Algorithms

● AL-SEP (In SEP hours)

Course objectives: Students should be able to explain, evaluate, and apply the specified data

structures and algorithms in a variety of problem-solving contexts. Additionally, they should be able

demonstrate the use of different data structures, algorithms, and algorithmic strategies (paradigms) to

36

solve the same problem. Also, they will continue to enhance and refine their understanding of the

impact that algorithmic design and use has on society.

Three Course Exemplar Approach

Algorithms-C

● AL-Foundational (3 hours)

○ Graphs including Graph Algorithms

● AL-Complexity (3 hours)

○ Asymptotic Complexity Analysis

○ Foundational Complexity Classes

■ O(2n) Exponential and O(n!) Factorial

○ Empirical Measurements of Performance

○ Tractability and Intractability

● AL-Strategies (3 hours)

○ Brute Force (e.g., traveling salesperson, knapsack)

○ Decrease-and-Conquer (e.g., topological sort)

○ Divide-and-Conquer (e.g., Strassen’s)

○ Greedy (e.g., Dijkstra’s, Kruskal’s)

○ Transform-and-Conquer/Reduction (e.g., heapsort, trees (2-3, AVL, Red-Black))

■ Dynamic Programming (e.g., Warshall’s, Floyd’s, Bellman-Ford)

○ Handling Exponential Growth (e.g., heuristic A*, branch-and-bound, backtracking)

● AL-Models (9 hours)

○ All CS Core topics

● AL-SEP (In SEP hours)

Course objectives: Students should be able to explain, evaluate, and apply the specified data

structures and algorithms in a variety of problem-solving contexts. Additionally, they should be able to

formally explain complexity analysis and the importance of tractability including approaches for handling

intractable problems. Finally, they should also be able to summarize formal models of computation,

grammars, and languages including the definition of a computer as a Turing Machine and the

undecidability of the Halting problem.

Four Course Exemplar Approach

Algorithms-C (third course)

● AL-Foundational (3 hours)

○ Graphs including Graph Algorithms

○ Sorting Algorithms

■ O(n log n) heapsort

■ Pseudo O(n) complexity (e.g., bucket, counting, radix)

○ Graph Algorithms

■ Transitive closure (e.g., Warshall’s)

■ Topological sort

○ Matching

■ Efficient String Matching (e.g., Boyer-Moore, Knuth-Morris-Pratt)

37

■ Longest common subsequence matching

■ Regular expression matching

● AL-Complexity (3 hours)

○ Asymptotic Complexity Analysis

○ Foundational Complexity Classes

■ O(2n) Exponential and O(n!) Factorial

○ Empirical Measurements of Performance

○ Tractability and Intractability

● AL-Strategies (3 hours)

○ Brute Force (e.g., traveling salesperson, knapsack)

○ Decrease-and-Conquer (e.g., topological sort)

○ Divide-and-Conquer (e.g., Strassen’s algorithm)

○ Greedy (e.g., Dijkstra’s, Kruskal’s)

○ Transform-and-Conquer/Reduction (e.g., heapsort, trees (2-3, AVL, Red-Black))

■ Dynamic Programming (e.g., Warshall’s, Floyd’s, Bellman-Ford)

○ Handling Exponential Growth (e.g., heuristic A*, branch-and-bound, backtracking)

Course objectives: Students should be able to explain, evaluate, and apply the specified data

structures and algorithms in a variety of problem-solving contexts. Additionally, they should be able to

formally explain complexity analysis and the importance of tractability including approaches for handling

intractable problems.

Computation Theory (fourth course)

● AL-Complexity (3 hours)

○ Turing Machine-based models of complexity (P, NP, and NP-C classes)

○ Space complexity (NSpace, PSpace Savitch’ Theorem)

● AL-Models (29 hours)

○ All CS and KA Core topics

● AL-SEP (In SEP hours)

Course objectives: Students should be able to explain, evaluate, and apply models of computation,

grammars, and languages. Additionally, they should be able to explain formal proofs that demonstrate

the capability and limitations of various automata. Students should be able to relate the complexity of

Random Access Models of Computation to Turing Machine models. Finally, students should be able to

summarize decidability and reduction proofs.

Committee

Chair: Richard Blumenthal, Regis University, Denver, CO, USA

Members:

● Cathy Bareiss, Bethel University, Mishawaka, MN, USA

● Tom Blanchet, SciTec, Inc., Boulder, CO, USA

38

● Doug Lea, State University of New York at Oswego, Oswego, NY, USA

● Sara Miner More, John Hopkins University, Baltimore, MD, USA

● Mia Minnes, University of California San Diego, San Diego, CA, USA

● Atri Rudra, University at Buffalo, Buffalo, NY, USA

● Christian Servin, El Paso Community College, El Paso, TX, USA

39

Architecture and Organization (AR)

Preamble

Computing professionals spend considerable time writing efficient code to solve a particular problem in

an application domain. As the shift from sequential to parallel processing occurs, a deeper understanding

of the underlying computer architectures is necessary. Architecture can no longer be viewed as a black

box where principles from one architecture can be applied to another. Instead, programmers should look

inside the black box and use specific components to enhance system performance and energy efficiency.

The Architecture and Organization (AR) knowledge area aims to develop a deeper understanding of the

hardware environments upon which almost all computing is based, and the relevant interfaces provided

to higher software layers. The target hardware comprises low-end embedded system processors up to

high-end enterprise multiprocessors.

The topics in this knowledge area will benefit students by enabling them to appreciate the fundamental

architectural principles of modern computer systems, including the challenge of harnessing parallelism

to sustain performance and energy improvements into the future. This KA will help computer science

students depart from the black box approach and become more aware of the underlying computer system

and the efficiencies specific architectures can achieve.

Changes since CS2013

Changes and additions are summarized as follows.

● Topics have been revised, particularly AR/Memory Hierarchy and AR/Performance and Energy

Efficiency. This update brings recent advances in memory caching and energy consumption.

● The newly created AR/Heterogeneous Architectures covers emerging topics in Computer

Architecture: Processing In-Memory (PIM) and domain-specific architectures (e.g., neural

network processors).

● The new AR/Quantum Architectures offers a "toolbox" covering introductory topics in quantum

computing.

● Knowledge units have been merged to better deal with overlaps:

● AR/Multiprocessing and Alternative Architectures were merged into newly created

AR/Heterogeneous Architectures.

● The new AR/Secure Processor Architectures covers hardware support for multi-stack security

applications.

Core Hours

Knowledge Unit CS Core KA Core

Digital Logic and Digital Systems 2 + 1 (SF)

40

Machine-Level Data Representation 1

Assembly Level Machine Organization 1 1 + 1 (PDC)

Memory Hierarchy 4+2 (OS)

Interfacing and Communication 1

Functional Organization 2

Performance and Energy Efficiency 3

Heterogeneous Architectures 2

Secure Processor Architectures 2

Quantum Architectures 2

Sustainability Issues Included in SEP hours

Total 9 16

The hours shared with OS include overlapping topics and are counted here.

Knowledge Units

AR-Logic: Digital Logic and Digital Systems

KA Core:

1. Combinational vs sequential logic/field programmable gate arrays (FPGAs) (See also: SF-

Overview, SF-Foundations, SPD-Embedded)

a. Fundamental combinational

b. Sequential logic building block

2. Computer-aided design tools that process hardware and architectural representations

3. High-level synthesis

a. Register transfer notation

b. Hardware description language (e.g., Verilog/VHDL/Chisel)

4. System-on-chip (SoC) design flow

5. Physical constraints

a. Gate delays

b. Fan-in and fan-out

c. Energy/power

d. Speed of light

Illustrative Learning Outcomes:

41

KA Core:

1. Discuss the progression of computer technology components from vacuum tubes to VLSI, from

mainframe computer architectures to the organization of warehouse-scale computers.

2. Describe parallelism and data dependencies between and within components in a modern

heterogeneous computer architecture.

3. Explain the relationship between parallelism and power consumption.

4. Construct the design of basic building blocks for a computer: arithmetic-logic unit (gate-level),

registers (gate-level), central processing unit (register transfer-level), and memory (register transfer-

level).

5. Evaluate simple building blocks (e.g., arithmetic-logic unit, registers, movement between registers)

of a simple computer design.

6. Analyze the timing behavior of a pipelined processor, identifying data dependency issues.

AR-Representation: Machine-Level Data Representation

CS Core:

1. Overview and history of computer architecture (See also: SPD-Game)

2. Bits, bytes, and words

3. Unsigned, signed and two’s complement representations

4. Numeric data representation and number bases

a. Fixed-point

b. Floating-point

5. Representation of non-numeric data

6. Representation of records, arrays and UTF data types (See also: AL-Foundational)

Illustrative Learning Outcomes:

CS Core:

1. Discuss why everything in computers are data, including instructions.

2. Explain how fixed-length number representations can affect accuracy and precision.

3. Describe how negative integers are stored in sign-magnitude and two’s-complement

representations.

4. Discuss how different formats can represent numerical data.

5. Explain the bit-level representation of non-numeric data, such as characters, strings, records, and

arrays.

6. Translate numerical data from one format to another.

7. Describe how a single adder (without overflow detection) can handle both signed (two’s

complement) and unsigned (binary) input without “knowing” which format a given input is using.

AR-Assembly: Assembly Level Machine Organization

CS Core:

1. von Neumann machine architecture

2. Control unit: instruction fetch, decode, and execution (See also: OS-Principles)

3. Introduction to SIMD vs MIMD and the Flynn taxonomy (See also: PDC-Programs, OS-Scheduling,

OS-Process)

42

4. Shared memory multiprocessors/multicore organization (See also: PDC-Programs, OS-Scheduling)

KA Core:

5. Instruction set architecture (ISA) (e.g., x86, ARM and RISC-V)

a. Fixed vs variable-width instruction sets

b. Instruction formats

c. Data manipulation, control, I/O

d. Addressing modes

e. Machine language programming

f. Assembly language programming

6. Subroutine call and return mechanisms (See also: FPL-Translation, OS-Principles)

7. I/O and interrupts (See also: OS-Principles)

8. Heap, static, stack, and code segments (See also: FPL-Translation, OS-Process)

Illustrative Learning Outcomes:

CS Core:

1. Discuss how the classical von Neumann functional units are implemented in embedded systems,

particularly on-chip and off-chip memory.

2. Describe how instructions are executed in a classical von Neumann machine, with extensions for

threads, multiprocessor synchronization, and SIMD execution.

3. Assess an example diagram with instruction-level parallelism and hazards to describe how they are

managed in typical processor pipelines.

KA Core:

4. Discuss how instructions are represented at the machine level and in the context of a symbolic

assembler.

5. Map an example of high-level language patterns into assembly/machine language notations.

6. Contrast different instruction formats considering aspects such as addresses per instruction and

variable-length vs fixed-length formats.

7. Analyze a subroutine diagram to comment on how subroutine calls are handled at the assembly

level.

8. Describe basic concepts of interrupts and I/O operations.

9. Write a simple assembly language program for string/array processing and manipulation.

AR-Memory: Memory Hierarchy

CS Core:

1. Memory hierarchy: the importance of temporal and spatial locality (See also: SF-Performance, OS-

Memory)

2. Main memory organization and operations (See also: OS-Memory)

3. Persistent memory (e.g., SSD, standard disks)

4. Latency, cycle time, bandwidth, and interleaving (See also: SF-Performance)

5. Cache memories (See also: SF-Performance)

a. Address mapping

b. Block size

43

c. Replacement and store policy

d. Prefetching

6. Multiprocessor cache coherence (See also: OS-Scheduling)

7. Virtual memory (hardware support) (See also: OS-Memory)

8. Fault handling and reliability (See also: SF-Reliability)

9. Reliability (See also: SF-Reliability, OS-Faults)

a. Error coding

b. Data compression

c. Data integrity

KA Core:

10. Processing In-Memory (PIM)

Illustrative Learning Outcomes:

CS Core:

1. Using a memory system diagram, identify the main types of memory technology (e.g., SRAM,

DRAM) and their relative cost and performance.

2. Measure the effect of memory latency on running time.

3. Enumerate the functions of a system with virtual memory management.

4. Compute average memory access time under various cache and memory configurations and mixes

of instruction and data references.

AR-IO: Interfacing and Communication

CS Core:

1. I/O fundamentals (See also: OS-Devices, PDC-Communication)

a. Handshaking and buffering

b. Programmed I/O

c. Interrupt-driven I/O (See also: OS-Principles)

2. Interrupt structures: vectored and prioritized, interrupt acknowledgment (See also: OS-Principles)

3. I/O devices (e.g., mouse, keyboard, display, camera, sensors, actuators) (See also: GIT-

Fundamentals, GIT-Interaction, OS-Advanced-Files, PDC-Programs)

4. External storage, physical organization, and drives

5. Buses fundamentals (See also: OS-Devices)

a. Bus protocols

b. Arbitration

c. Direct-memory access (DMA)

Illustrative Learning Outcomes:

CS Core:

1. Analyze an interrupt control diagram to comment on how interrupts are used to implement I/O

control and data transfers.

2. Enumerate various types of buses in a computer system.

3. List the advantages of magnetic disks and contrast them with those of solid-state disks.

44

AR-Organization: Functional Organization

KA Core:

1. Implementation of simple datapaths, including instruction pipelining, hazard detection, and

resolution (e.g., stalls, forwarding)

2. Control unit

a. Hardwired implementation

b. Microprogrammed realization

3. Instruction pipelining (See also: SF-Overview)

4. Introduction to instruction-level parallelism (ILP) (See also: PDC-Programs)

Illustrative Learning Outcomes:

KA Core:

1. Compare alternative implementation of datapaths in modern computer architectures.

2. Produce a set of control signals for adding two integers using hardwired and microprogrammed

implementations.

3. Discuss instruction-level parallelism using pipelining and significant hazards that may occur.

4. Design a complete processor, including datapath and control.

5. Compute the average cycles per instruction for a given processor and memory system

implementation.

AR-Performance-Energy: Performance and Energy Efficiency

KA Core:

1. Performance-energy evaluation (introduction): performance, power consumption, memory, and

communication costs (See also: SF-Evaluation, OS-Scheduling, SPD-Game)

2. Branch prediction, speculative execution, out-of-order execution, Tomasulo's algorithm

3. Enhancements for vector processors and GPUs (See also: SPD-Game)

4. Hardware support for multithreading (See also: OS-Concurrency, OS-Scheduling, PDC-Programs)

a. Race conditions

b. Lock implementations

c. Point-to-point synchronization

d. Barrier implementation

5. Scalability

6. Alternative architectures including VLIW/EPIC, accelerators, and other special purpose processors

7. Dynamic voltage and frequency scaling (DVFS)

8. Dark Silicon

Illustrative Learning Outcomes:

KA Core:

1. Discuss performance and energy efficiency evaluation metrics.

2. Analyze a speculative execution diagram and write about the decisions that can be made.

3. Create a GPU performance-watt benchmarking diagram.

4. Write a multithreaded program that adds (in parallel) elements of two integer vectors.

5. Recommend a set of design choices for alternative computer architectures.

45

6. Enumerate key concepts associated with dynamic voltage and frequency scaling.

7. Measure energy savings improvement for an 8-bit integer quantization compared to a 32-bit

quantization.

AR-Heterogeneity: Heterogeneous Architectures

KA Core:

1. SIMD and MIMD architectures (e.g., General-Purpose GPUs, TPUs, and NPUs) (See also: PDC-

Programs, SPD-Embedded, GIT-Shading, SPD-Game)

2. Heterogeneous memory systems (See also: OS-Process, PDC-Communication)

a. Shared memory versus distributed memory

b. Volatile vs non-volatile memory

c. Coherence protocols

3. Domain-Specific Architectures (DSAs) (See also: HCI-Accountability, GIT-Shading)

a. Machine Learning Accelerator

b. In-networking computing (See also: NC-Applications)

c. Embedded systems for emerging applications

d. Neuromorphic computing

e. Edge computing devices

4. Packaging and integration solutions such as 3DIC and chiplets

5. Machine learning in architecture design

a. AI algorithms for workload analysis

b. Optimization of architecture configurations for performance and power efficiency

Illustrative Learning Outcomes:

KA Core

1. Analyze a system diagram with alternative parallel architectures, e.g., SIMD and MIMD, and identify

the key differences.

2. Discuss what memory-management issues are found in multiprocessors that are not present in

uniprocessors and how these issues might be resolved.

3. Indicate the differences between memory backplane, processor memory interconnect, and remote

memory via networks, their implications for access latency, and their impact on program

performance.

4. Discuss how you would determine when to use a domain-specific accelerator instead of a general-

purpose CPU.

5. Enumerate key differences in architectural design principles between a vector and scalar-based

processing unit.

6. List the advantages and disadvantages of a PIM architecture.

AR-Security: Secure Processor Architectures

KA core:

1. Principles of Secure Hardware

a. Security Risk Analysis, Asset Protection, and Threat Model

b. Cryptographic Acceleration with Hardware (See also: SEC-Crypto)

46

c. Support for virtualization (e.g., OS isolation)

2. Roots of trust in hardware, Physically Unclonable Functions (PUF)

3. Hardware Random Number Generators

4. Memory protection extensions

a. Runtime pointer bounds checking (e.g., buffer overflow)

b. Protection at the microarchitectural level

c. Protection at the ISA level

5. Trusted Execution Environment (TEE)

a. Trusted Computer Base Protections

b. Protecting virtual machines

c. Protecting containers

d. Trusted software modules (Enclaves)

6. Homomorphic encryption for privacy-preserving data processing

Illustrative Learning Outcomes

KA Core:

1. Discuss principles of secure hardware, exploring a framework for risk analysis and asset protection.

2. Summarize how Physically Unclonable Functions (PUF) can be a unique device identifier in security

applications.

3. Distinguish a random number generator with dedicated hardware support from generators without

hardware dedicated to generating entropy.

4. List the advantages and disadvantages of memory protection at the ISA level.

5. Describe key design issues of a trusted execution environment (TEE) to support virtual machines.

AR-Quantum: Quantum Architectures

KA Core:

1. Principles (See also: AL-Models: 8)

a. The wave-particle duality principle

b. The uncertainty principle in the double-slit experiment

c. What is a Qubit? Superposition, interference, and measurement. Photons as qubits

d. Systems of two qubits, Entanglement, Bell states, The No-Signaling theorem

2. Axioms of QM: superposition principle, measurement axiom, unitary evolution

3. Single qubit gates for the circuit model of quantum computation: X, Z, H

4. Two qubit gates and tensor products, working with matrices

5. The No-Cloning Theorem. The Quantum Teleportation protocol

6. Algorithms (See also: AL-Foundational)

a. Simple quantum algorithms: Bernstein-Vazirani, Simon’s algorithm

b. Implementing Deutsch-Josza with Mach-Zehnder Interferometers

c. Quantum factoring (Shor’s Algorithm)

d. Quantum search (Grover’s Algorithm)

7. Implementation aspects (See also: SPD-Interactive)

a. The physical implementation of qubits

b. Classical control of a Quantum Processing Unit (QPU)

c. Error mitigation and control, NISQ and beyond

47

d. Measurement approaches

8. Emerging Applications

a. Post-quantum encryption

b. The Quantum Internet

c. Adiabatic quantum computation (AQC) and quantum annealing

Illustrative Learning Outcomes:

KA Core:

1. Discuss how a quantum object produced as a particle propagates like a wave and is detected as a

particle with a probability distribution corresponding to the wave.

2. Discuss the quantum-level nature that is inherently probabilistic.

3. Express your view on entanglement that can be used to create non-classical correlations, but there

is no way to use quantum entanglement to send messages faster than the speed of light.

4. Describe quantum parallelism and the role of constructive vs destructive interference in quantum

algorithms given the probabilistic nature of measurement(s).

5. Analyze a code snippet providing the role of quantum Fourier transform (QFT) in Shor’s algorithm.

6. Write a program to implement Shor’s algorithm in a simulator, highlighting the classical components

and aspects of Shor’s algorithm.

7. Enumerate the specifics of each qubit modality (e.g., trapped ion, superconducting, silicon spin,

photonic, quantum dot, neutral atom, topological, color center, electron-on-helium).

8. Contrast AQC with the gate model of quantum computation and the problems each is better suited

to solve.

AR-SEP: Sustainability Issues

Non-core:

1. Environmental impacts of implementation decisions

a. Sustainability goals, resource consumption, and economic viability

b. Carbon footprint, hardware electronic waste

c. The energy footprint of data centers at various workloads (e.g., AI model training and use)

d. Guidelines for sustainable design standards

Illustrative Learning Outcomes:

Non-core:

1. Assess the environmental impacts of a given project’s deployment (e.g., the energy consumption of

CPUs and GPUs, contribution to e-waste, and effect of hardware virtualization in data centers).

Professional Dispositions

● Self-directed: Students should increasingly become self-motivated to acquire complementary

knowledge.

● Proactive: Students should exercise control and anticipate issues related to the underlying

computer system.

48

Mathematics Requirements

● MSF-Discrete, MSF-Linear, MSF-Statistics, MSF-Calculus, MSF-Probability

Course Packaging Suggestions

Computer Architecture - Introductory Course to include the following:

● SEP-History (2 hours)

● AR-Representation (2 hours)

● AR-Assembly (2 hours)

● AR-Memory (10 hours)

● OS-Memory (10 hours)

● AR-IO (4 hours)

● AR-Heterogeneity (5 hours)

● PDC-Programs (4 hours)

● SEP-Ethical-Analysis (3 hours)

Course objectives: Students should understand the fundamentals of modern computer architectures,

including the challenges associated with memory caches, memory management, and pipelining.

Prerequisites:

● MSF-Discrete

Computer Architecture - Advanced Topics Course to include the following:

● AR-Logic (4 hours)

● AR-Representation (2 hours)

● AR-Assembly (2 hours)

● AR-Memory (10 hours)

● AR-IO (2 hours)

● SF-Performance (4 hours)

● AR-Heterogeneity (4 hours)

● AR-Performance-Energy (5 hours)

● AR-Security (4 hours)

● AR-Quantum (4 hours)

Course objectives: Students should understand how computer architectures evolved into today’s

heterogeneous systems and to what extent choices made in the past can influence the design of future

high-performance computing systems.

Prerequisites:

● MSF-Discrete

Systems Course to include the following:

● SEP-History (2 hours)

49

● SF-Design (2 hours)

● SF-Reliability (2 hours)

● OS-Purpose (2 hours)

● AR-Representation (2 hours)

● AR-Assembly (2 hours)

● AR-Memory (8 hours)

● AR-IO (2 hours)

● PDC-Algorithms (4 hours)

● AR-Heterogeneity (4 hours)

● AR-Performance-Energy (5 hours)

● NC-Applications (5 hours)

Course objectives: Students should understand the advanced architectural aspects of modern

computer systems, including heterogeneous architectures and the required hardware and software

interfaces to improve the performance and energy footprint of applications.

Prerequisites:

● MSF-Discrete, MSF-Statistics

Committee

Chair: Marcelo Pias, Federal University of Rio Grande (FURG), Rio Grande-RS, Brazil

Members:

● Brett A. Becker, University College Dublin, Dublin, Ireland

● Mohamed Zahran, New York University, New York, NY, USA

● Monica D. Anderson, University of Alabama, Tuscaloosa, AL, USA

● Qiao Xiang, Xiamen University, Xiamen, China

● Adrian German, Indiana University, Bloomington, IN, USA

50

51

Data Management (DM)

Preamble

Since the mid-1970s, the study of Data Management (DM) has meant an almost exclusive study of

relational database systems. Depending on institutional context, students have studied, in varying

proportions, the following.

• Data modeling and database design: for example, E-R Data model, relational model,

normalization theory

• Query construction: e.g., relational algebra, SQL

• Query processing: e.g., indices (B+tree, hash), algorithms (e.g., external sorting, select, project,

join), query optimization (transformations, index selection)

• DBMS internals: e.g., concurrency/locking, transaction management, buffer management

Today's graduates are expected to possess DBMS user (rather than implementor) skills. These

primarily include data modeling and query construction; ability to take an unorganized collection of data,

organize it using a DBMS, and access/update the collection via queries.

Additionally, students need to study the following.

● The role data plays in an organization. This includes the Data Life Cycle: Creation-Processing-

Review/Reporting-Retention/Retrieval-Destruction.

● The social/legal aspects of data collection: e.g., scale, data privacy, database privacy (compliance)

by design, de-identification, ownership, reliability, database security, and intended and unintended

applications.

● Emerging and advanced technologies that are augmenting/replacing traditional relational systems,

particularly those used to support (big) data analytics, including NoSQL (e.g., JSON, XML, key-

value store databases), cloud databases, MapReduce, and dataframes.

● The existing and emerging roles for those involved with data management, which include the

following.

o Product feature engineers: those who use both SQL and NoSQL operational databases.

o Analytical engineers/data engineers: those who write analytical SQL, Python, and Scala

code to build data assets for business groups.

o Business analysts: those who build/manage data most frequently with Excel spreadsheets.

o Data infrastructure engineers: those who implement a data management system in a variety

of data applications (e.g., OLTP).

o “Everyone” who produces or consumes data must understand the associated social, ethical,

and professional issues.

One role that transcends all the above categories is that of data custodian. Previously, data were seen

as a resource to be managed (Information Systems Management) just like other enterprise resources.

Today, data are seen in a larger context. Data about customers can now be seen as belonging to (or in

52

some national contexts, as owned by) those customers. There is now an accepted understanding that

the safe and ethical storage, and use, of institutional data is part of being a responsible data custodian.

Furthermore, we acknowledge the tension between a curricular focus on professional preparation

versus the study of a knowledge area as a scientific endeavor. This is particularly true with Data

Management. For example, proving (or at least knowing) the completeness of Armstrong’s Axioms is

fundamental in functional dependency theory. However, most computer science graduates will never

utilize this concept during their professional careers. The same can be said for many other topics in the

Data Management canon. Conversely, if our graduates can only normalize data into Boyce-Codd

normal form (using an automated tool) and write SQL queries, without understanding the role that

indices play in efficient query execution, we have done them and society a disservice.

To this end, the number of CS Core hours is relatively small relative to the KA Core hours. This

approach is designed to allow institutions with differing contexts to customize their curricula

appropriately. An institution that focuses on OLTP implementation, for example, would prioritize efficient

storage and data access, while an institution that focuses on product features would prioritize

programmatic access to extant databases.

However, an institution manages this tension, we wish to give voice to one of the ironies of computer

science curricula. Students typically spend much of their educational life reading (and writing) data from

a file or interactively, while outside of the academy the predominant data comes from databases

accessed programmatically. Perhaps in the not-too-distant future students will learn programmatic

database access early on and then continue this practice as they progress through their curriculum.

Finally, we understand that while the Data Management KA may be orthogonal to the SEC (Security)

and SEP (Society, Ethics, and the Profession) KAs, it is also ground zero for these (and other)

knowledge areas. When designing persistent data stores, the question of what should be stored must

be examined from both legal and ethical perspectives. Are there privacy concerns? And just as

importantly, how well protected is the data?

Changes since CS2013

● Rename the knowledge area from Information Management to Data Management. This

renaming does not represent any kind of philosophical shift. It is simply an effort to avoid

confusion with the similar definitions used in Information Systems and Information Technology

curricula.

● Inclusion of NoSQL approaches and MapReduce as CS Core topics.

● Increased attention to SEP and SEC topics in both the CS Core and KA Core areas.

Core Hours

Knowledge Unit CS Core Hours KA Core Hours

The Role of Data 2

53

Core Database Systems Concepts 2 1

Data Modeling 2 3

Relational Databases 1 3

Query Construction 2 4

Query Processing 4

DBMS Internals 4

NoSQL Systems 2

Data Security & Privacy 1 2

Data Analytics 3

Distributed Databases/Cloud Computing

Semi-structured and Unstructured Databases

Society, Ethics, and the Profession Included in SEP hours

Total 10 26

The CS Core hour in Data Security & Privacy is shared with SEC and is counted here.

Knowledge Units

DM-Data: The Role of Data and the Data Life Cycle

CS Core:

1. The Data Life Cycle: Creation-Processing-Review/Reporting-Retention/Retrieval-Destruction (See

also: SEP-Context, SEP-Ethical-Analysis, SEP-Professional-Ethics, SEP-Privacy, SEP-Security,

SEC-Foundations)

Illustrative Learning Outcomes:

CS Core:

1. Identify the five stages of the Data Life Cycle.

DM-Core: Core Database System Concepts

CS Core:

54

1. Purpose and advantages of database systems

2. Components of database systems

3. Design of core DBMS functions (e.g., query mechanisms, transaction management, buffer

management, access methods)

4. Database architecture, data independence, and data abstraction

5. Transaction management

6. Normalization

7. Approaches for managing large volumes of data (e.g., NoSQL database systems, use of

MapReduce) (See also: PDC-Algorithms)

8. How to support CRUD-only applications

9. Distributed databases/cloud-based systems

10. Structured, semi-structured, and unstructured data

11. Use of a declarative query language

KA Core:

12. Systems supporting structured and/or stream content

Illustrative Learning Outcomes:

CS Core:

1. Identify at least four advantages that using a database system provides.

2. Enumerate the components of a (relational) database system.

3. Follow a query as it is processed by the components of a (relational) database system.

4. Defend the value of data independence.

5. Compose a simple select-project-join query in SQL.

6. Enumerate the four properties of a correct transaction manager.

7. Describe the advantages for eliminating duplicate repeated data.

8. Outline how MapReduce uses parallelism to process data efficiently.

9. Evaluate the differences between structured and semi/unstructured databases.

DM-Modeling: Data Modeling

CS Core:

1. Data modeling (See also: SE-Requirements)

2. Relational data model (See also: MSF-Discrete)

KA Core:

3. Conceptual models (e.g., entity-relationship, UML diagrams)

4. Semi-structured data models (expressed using DTD, XML, or JSON Schema, for example)

Non-core:

5. Spreadsheet models

6. Object-oriented models (See also: FPL-OOP)

a. GraphQL

7. New features in SQL

8. Specialized Data Modeling topics

55

a. Time series data (aggregation, join)

b. Graph data (link traversal)

c. Techniques for avoiding inefficient raw data access (e.g., “avg daily price”): materialized views

and special data structures (e.g., Hyperloglog, bitmap)

d. Geo-Spatial data (e.g., GIS databases) (See also: SPD-Interactive)

Illustrative Learning Outcomes:

CS Core:

1. Describe the components of the relational data model.

2. Model 1:1, 1:n, and n:m relationships using the relational data model.

KA Core:

3. Describe the components of the E-R (or some other non-relational) data model.

4. Model a given environment using a conceptual data model.

5. Model a given environment using the document-based or key-value store-based data model.

DM-Relational: Relational Databases

CS Core:

1. Entity and referential integrity: Candidate key, superkeys

2. Relational database design

KA Core:

3. Mapping conceptual schema to a relational schema

4. Physical database design: file and storage structures (See also: OS-Files)

5. Introduction to Functional dependency theory

6. Normalization Theory

a. Decomposition of a schema; lossless-join, and dependency-preservation properties of a

decomposition

b. Normal forms (BCNF)

c. Denormalization (for efficiency)

Non-core:

7. Functional dependency theory

a. Closure of a set of attributes

b. Canonical Cover

8. Normalization theory

a. Multi-valued dependency (4NF)

b. Join dependency (PJNF, 5NF)

c. Representation theory

Illustrative Learning Outcomes:

CS Core:

1. Describe the defining characteristics behind the relational data model.

2. Comment on the difference between a foreign key and a superkey.

56

3. Enumerate the different types of integrity constraints.

KA Core:

4. Compose a relational schema from a conceptual schema which contains 1:1, 1:n, and n:m

relationships.

5. Map appropriate file structure to relations and indices.

6. Describe how functional dependency theory generalizes the notion of key.

7. Defend a given decomposition as lossless and or dependency preserving.

8. Detect which normal form a given decomposition yields.

9. Comment on reasons for denormalizing a relation.

DM-Querying: Query Construction

CS Core:

1. SQL Query Formation

a. Interactive SQL execution

b. Programmatic execution of an SQL query

KA Core:

2. Relational Algebra

3. SQL

a. Data definition including integrity and other constraint specifications

b. Update sublanguage

Non-core:

4. Relational Calculus

5. QBE and 4th-generation environments

6. Different ways to invoke non-procedural queries in conventional languages

7. Introduction to other major query languages (e.g., XPATH, SPARQL)

8. Stored procedures

Illustrative Learning Outcomes:

CS Core:

1. Compose SQL queries that incorporate select, project, join, union, intersection, set difference, and

set division.

2. Determine when a nested SQL query is correlated or not.

3. Iterate over data retrieved programmatically from a database via an SQL query.

KA Core:

4. Define, in SQL, a relation schema, including all integrity constraints and delete/update triggers.

5. Compose an SQL query to update a tuple in a relation.

DM-Processing: Query Processing

KA Core:

1. Page structures

57

2. Index structures

a. B+ trees (See also: AL-Foundational)

b. Hash indices: static and dynamic (See also: AL-Foundational, SEC-Foundations)

c. Index creation in SQL

3. File structures (See also: OS-Files)

a. Heap files

b. Hash files

4. Algorithms for query operators

a. External Sorting (See also: AL-Foundational)

b. Selection

c. Projection; with and without duplicate elimination

d. Natural Joins: Nested loop, Sort-merge, Hash join

e. Analysis of algorithm efficiency (See also: AL-Complexity)

5. Query transformations

6. Query optimization

a. Access paths

b. Query plan construction

c. Selectivity estimation

d. Index-only plans

7. Parallel Query Processing (e.g., parallel scan, parallel join, parallel aggregation) (See also: PDC-

Algorithms)

8. Database tuning/performance

a. Index selection

b. Impact of indices on query performance (See also: SF-Performance, SEP-Sustainability)

c. Denormalization

Illustrative Learning Outcomes:

KA Core:

1. Describe the purpose and organization of both B+ tree and hash index structures.

2. Compose an SQL command to create an index (any kind).

3. Specify the steps for the various query operator algorithms: external sorting, projection with

duplicate elimination, sort-merge join, hash-join, block nested-loop join.

4. Derive the run-time (in I/O requests) for each of the above algorithms.

5. Transform a query in relational algebra to its equivalent appropriate for a left-deep, pipelined

execution.

6. Compute selectivity estimates for a given selection and/or join operation.

7. Describe how to modify an index structure to facilitate an index-only operation for a given relation.

8. For a given scenario decide on which indices to support for the efficient execution of a set of

queries.

9. Describe how DBMSs leverage parallelism to speed up query processing by dividing the work

across multiple processors or nodes.

58

DM-Internals: DBMS Internals

KA Core:

1. DB Buffer Management (See also: OS-Memory, SF-Resource)

2. Transaction Management (See also: PDC-Coordination)

a. Isolation Levels

b. ACID

c. Serializability

d. Distributed Transactions

3. Concurrency Control: (See also: OS-Concurrency)

a. 2-Phase Locking

b. Deadlocks handling strategies

c. Quorum-based consistency models

4. Recovery Manager

a. Relation with Buffer Manager

Non-core:

5. Concurrency Control:

a. Optimistic concurrency control

b. Timestamp concurrency control

6. Recovery Manager

a. Write-Ahead logging

b. ARIES recovery system (Analysis, REDO, UNDO)

Illustrative Learning Outcomes:

KA Core:

1. Describe how a DBMS manages its Buffer Pool.

2. Describe the four properties for a correct transaction manager.

3. Outline the principle of serializability.

DM-NoSQL: NoSQL Systems

KA Core:

1. Why NoSQL? (e.g., Impedance mismatch between Application [CRUD] and RDBMS)

2. Key-Value and Document data model

Non-core:

3. Storage systems (e.g., Key-Value systems, Data Lakes)

4. Distribution Models (Sharding and Replication) (See also: PDC-Communication)

5. Graph Databases

6. Consistency Models (Update and Read, Quorum consistency, CAP theorem) (See also: PDC-

Communication)

7. Processing model (e.g., Map-Reduce, multi-stage map-reduce, incremental map-reduce) (See also:

PDC-Communication)

59

8. Case Studies: Cloud storage system (e.g., S3); Graph databases; “When not to use NoSQL” (See

also: SPD-Web)

Illustrative Learning Outcomes:

KA Core:

1. Develop a use case for the use of NoSQL over RDBMS.

2. Describe the defining characteristics behind Key-Value and Document-based data models.

DM-Security: Data Security and Privacy

CS Core:

1. Differences between data security and data privacy (See also: SEC-Foundations)

2. Protecting data and database systems from attacks, including injection attacks such as SQL

injection (See also: SEC-Foundations)

3. Personally identifying information (PII) and its protection (See also: SEC-Foundations, SEP-

Security, SEP-Privacy)

4. Ethical considerations in ensuring the security and privacy of data (See also: SEC-SEP, SEP-

Ethical-Analysis, SEP-Security, SEP-Privacy)

KA Core:

5. Need for, and different approaches to securing data at rest, in transit, and during processing (See

also: SEC-Foundations, SEC-Crypto)

6. Database auditing and its role in digital forensics (See also: SEC-Forensics)

7. Data inferencing and preventing attacks (See also: SEC-Crypto)

8. Laws and regulations governing data security and data privacy (See also: SEP-Security, SEP-

Privacy, SEC-Foundations, SEC-Governance)

Non-core:

9. Typical risk factors and prevention measures for ensuring data integrity (See also: SEC-

Governance)

10. Ransomware and prevention of data loss and destruction (See also: SEC-Coding, SEC-Forensics)

Illustrative Learning Outcomes:

CS Core:

1. Describe the differences in the goals for data security and data privacy.

2. Identify and mitigate risks associated with different approaches to protecting data.

3. Describe legal and ethical considerations of end-to-end data security and privacy.

KA Core:

4. Develop a database auditing system given risk considerations.

5. Apply several data exploration approaches to understanding unfamiliar datasets.

60

DM-Analytics: Data Analytics

KA Core:

1. Exploratory data techniques (motivation, representation, descriptive statistics, visualizations)

2. Data science lifecycle: business understanding, data understanding, data preparation, modeling,

evaluation, deployment, and user acceptance (See also: AI-ML)

3. Data mining and machine learning algorithms: e.g., classification, clustering, association, regression

(See also: AI-ML)

4. Data acquisition and governance (See also: SEC-Governance)

5. Data security and privacy considerations (See also: SEP-Security, SEP-Privacy, SEC-Foundations)

6. Data fairness and bias (See also: SEP-Security, AI-SEP)

7. Data visualization techniques and their use in data analytics (See also: GIT-Visualization)

8. Entity Resolution

Illustrative Learning Outcomes:

KA Core:

1. Describe several data exploration approaches, including visualization, to understanding unfamiliar

datasets.

2. Apply several data exploration approaches to understanding unfamiliar datasets.

3. Describe basic machine learning/data mining algorithms and when they are appropriate for use.

4. Apply several machine learning/data mining algorithms.

5. Describe legal and ethical considerations in acquiring, using, and modifying datasets.

6. Describe issues of fairness and bias in data collection and usage.

DM-Distributed: Distributed Databases/Cloud Computing

Non-core:

1. Distributed DBMS (See also: PDC-Communications)

a. Distributed data storage

b. Distributed query processing

c. Distributed transaction model

d. Homogeneous and heterogeneous solutions

e. Client-server distributed databases (See also: NC-Fundamentals)

2. Parallel DBMS (See also: PDC-Algorithms)

a. Parallel DBMS architectures: shared memory, shared disk, shared nothing;

b. Speedup and scale-up, e.g., use of the MapReduce processing model (See also: PDC-

Programs, SF-Foundations)

c. Data replication and weak consistency models (See also: PDC-Coordination)

DM-Unstructured: Semi-structured and Unstructured Databases

Non-core:

1. Vectorized unstructured data (text, video, audio, etc.) and vector storage

a. TF-IDF Vectorizer with ngram

b. Word2Vec

c. Array database or array data type handling

61

2. Semi-structured databases (e.g., JSON)

a. Storage

i. Encoding and compression of nested data types

b. Indexing

i. Btree, skip index, Bloom filter

ii. Inverted index and bitmap compression

iii. Space filling curve indexing for semi-structured geo-data

c. Query processing for OLTP and OLAP use cases

i. Insert, Select, update/delete tradeoffs

ii. Case studies on Postgres/JSON, MongoDB, and Snowflake/JSON

DM-SEP: Society, Ethics, and the Profession

CS Core:

1. Issues related to scale (See also: SEP-Economies)

2. Data privacy overall (See also: SEP-Privacy, SEP-Ethical-Analysis)

a. Privacy compliance by design (See also: SEP-Privacy)

3. Data anonymity (See also: SEP-Privacy)

4. Data ownership/custodianship (See also: SEP-Professional-Ethics)

5. Intended and unintended applications of stored data (See also: SEP-Professional-Ethics, SEC-

Foundations)

KA Core:

6. Reliability of data (See also: SEP-Security)

7. Provenance, data lineage, and metadata management (See also: SEP-Professional-Ethics)

8. Data security (See also: DM-Security, SEP-Security)

Illustrative Learning Outcomes:

CS Core:

1. Enumerate three social and three legal issues related to large data collections.

2. Describe the value of data privacy.

3. Identify the competing stakeholders with respect to data ownership.

4. Enumerate three negative unintended consequences from a given (well known) data-centric

application (e.g., Facebook, LastPass, Ashley Madison).

KA Core:

5. Describe the meaning of data provenance and lineage.

6. Identify how a database might contribute to data security as well as how it may introduce

insecurities.

Professional Dispositions

● Meticulous: Those who either access or store data collections must be meticulous in fulfilling

data ownership responsibilities.

62

● Responsible: In conjunction with the professional management of (personal) data, it is equally

important that data are managed responsibly. Protection from unauthorized access as well as

prevention of irresponsible, though legal, use of data is paramount. Furthermore, data

custodians need to protect data not only from outside attack, but from crashes and other

foreseeable dangers.

● Collaborative: Data managers and data users must behave in a collaborative fashion to ensure

that the correct data are accessed and are used only in an appropriate manner.

● Responsive: The data that get stored and are accessed are always in response to an

institutional need/request.

Mathematics Requirements

Required:

● Discrete Mathematics: Set theory (union, intersection, difference, cross-product) (See also:

MSF-Discrete)

Desired:

● Probability and Statistics for those studying DM-Analytics. (See also: MSF-Probability, MSF-

Statistics)

Desirable Data Structures:

● Hash functions and tables (See also: AL-Foundational)

● Balanced (binary) trees (e.g., AVL, 2-3-4, Red-Black) (See also: AL-Foundational)

● B and B+-trees

Course Packaging Suggestions

For those implementing a single course on Database Systems, there are a variety of options. As

described in [1], there are four primary perspectives from which to approach databases:

● Database design/modeling

● Database use

● Database administration

● Database development, which includes implementation algorithms

Course design proceeds by focusing on topics from each perspective in varying degrees according to

one’s institutional context. For example, in [1], one of the courses described can be characterized as

design/modeling (20%), use (20%), development/internals (30%), and administration/tuning/advanced

topics (30%). The topics might include the following.

● DM-SEP (3 hours)

● DM-Data (1 hour)

● DM-Core (3 hours)

● DM-Modeling (5 hours)

● DM-Relational (4 hours)

63

● DM-Querying (6 hours)

● DM-Processing (5 hours)

● DM-Internals (5 hours)

● DM-NoSQL (4 hours)

● DM-Security (3 hours)

● DM-Distributed (2 hours)

The more interesting question may be how to cover the CS Core concepts in the absence of a

dedicated database course. The key to accomplishing this may be to normalize database access.

Starting with the introductory course, students could access a database instead of using file I/O or

interactive data entry to acquire the data needed for introductory-level programming. As students

progress through their curriculum, additional CS Core topics could be introduced. For example,

introductory students could be given the code to access the database along with the SQL query. At the

intermediate level, they could be writing their own queries. Finally, in a Software Engineering or

capstone course, they could practice database design. One advantage of this approach, databases

across the curriculum, is that it allows for the inclusion of database-related SEP topics to also be

spread across the curriculum.

In a similar vein one might have a whole course on the Role of Data from either a Security (SEC)

perspective, or an Ethics (SEP) perspective.

Committee

Chair: Mikey Goldweber, Denison University, Granville, OH, USA

Members:

● Sherif Aly, The American University in Cairo, Cairo, Egypt

● Sara More, Johns Hopkins University, Baltimore, MD, USA

● Mohamed Mokbel, University of Minnesota, Minneapolis, MN, USA

● Rajendra K. Raj, Rochester Institute of Technology, Rochester, NY, USA

● Avi Silberschatz, Yale University, New Haven, CT, USA

● Min Wei, Microsoft, Seattle, WA, USA

● Qiao Xiang, Xiamen University, Xiamen, China

References

[1] The 2022 Undergraduate Database Course in Computer Science: What to Teach?. Michael

Goldweber, Min Wei, Sherif Aly, Rajendra K. Raj, and Mohamed Mokbel. ACM Inroads, 13, 3,

2022.

64

65

Foundations of Programming Languages (FPL)

Preamble

The foundations of programming languages are rooted in discrete mathematics, logic, and formal

languages, and provide a basis for the understanding of complex modern programming languages.

Although programming languages vary according to the language paradigm and the problem domain

and evolve in response to both societal needs and technological advancement, they share an

underlying abstract model of computation and program development. This remains true even as

processor hardware and their interface with programming tools become increasingly intertwined and

progressively more complex. An understanding of the common abstractions and programming

paradigms enables faster learning of programming languages.

The Foundations of Programming Languages knowledge area is concerned with articulating the

underlying concepts and principles of programming languages, the formal specification of a

programming language and the behavior of a program, explaining how programming languages are

implemented, comparing the strengths and weaknesses of various programming paradigms, and

describing how programming languages interface with entities such as operating systems and

hardware. The concepts covered here are applicable to several languages and an understanding of

these principles assists a learner to move readily from one language to another, as well as select a

programming paradigm and language that best suits the problem at hand.

Programming languages are the medium through which programmers precisely describe concepts,

formulate algorithms, and reason about solutions. Over the course of a career, a computer scientist will

learn and work with many different languages, separately or together. Software developers must

understand different programming models, programming features and constructs, and underlying

concepts to make informed design choices among languages that support multiple complementary

approaches. It would be useful to know how programming language features are defined, composed,

and implemented to improve execution efficiency and long-term maintenance of developed software.

Also useful is a basic knowledge of language translation, program analysis, run-time behavior, memory

management and interplay of concurrent processes communicating with each other through message-

passing, shared memory, and synchronization. Finally, some developers and researchers will need to

design new languages, an exercise which requires greater familiarity with basic principles.

Changes since CS2013

Changes since 2013 include a change in name of the KA from Programming Languages to

Foundations of Programming Languages to reflect the fact that the KA is about the fundamentals

underpinning programming languages, and related concepts, not about any specific programming

language. Changes also include a redistribution of content formerly identified as core Tier-1 and core

Tier-2 within the Programming Language Knowledge Area (KA). In CS2013, graduates were expected

to complete all Tier-1 topics and 80% of Tier-2 topics, for a total of 24 required hours. These 24 hours

66

are designated as CS Core topics in CS2023. The remaining Tier-2 topics are designated as KA Core

topics in CS2023. The change in core topics (Tier-1 plus 80% of Tier-2 hours) from 2013 reflects the

change in importance or relevance of topics over the past decade. The inclusion of new topics was

driven by their current prominence in the programming language landscape, or the anticipated impact

of emerging areas on the profession in general. Specifically, the changes are:

● Object-Oriented Programming -4 CS Core hours

● Functional Programming -2 CS Core hours

● Event-Driven and Reactive Programming +1 CS Core hour

● Parallel and Distributed Computing +3 CS Core hours

● Type Systems -1 CS Core hour

● Program Representation -1 CS Core hour

In addition, a number of knowledge units from CS2013 were renamed to reflect their content more

accurately, as noted here.

● Static Analysis was renamed Program Analysis and Analyzers.

● Concurrency and Parallelism was renamed Parallel and Distributed Computing.

● Program Representation was renamed Program Abstraction and Representation.

● Runtime Systems was renamed Runtime Behavior and Systems.

● Basic Type Systems and Type Systems were merged into a single topic and named Type

Systems.

Six new knowledge units were added to reflect their continuing and growing importance as we look

toward the 2030s:

● Shell Scripting +2 CS Core hours

● Systems Execution and Memory Model +3 CS Core hours

● Formal Development Methodologies

● Design Principles of Programming Languages

● Fundamentals of Programming Languages

● Society, Ethics, and the Profession

Notes:

● Several topics within this knowledge area either build on or overlap content covered in other

knowledge areas such as the Software Development Fundamentals knowledge area in a

curriculum’s introductory courses. Curricula will differ on which topics are integrated in this

fashion and which are postponed until later courses on software development and programming

languages.

● Different programming paradigms correspond to different problem domains. Most languages

have evolved to integrate more than one programming paradigm such as imperative with object-

oriented, functional programming with object-oriented, logic programming with object-oriented,

and event and reactive modeling with object-oriented programming.

Hence, the emphasis is not on just one programming paradigm but on a balance of all major

programming paradigms.

● While the number of CS Core and KA Core hours is identified for each major programming

paradigm (object-oriented, functional, logic), the distribution of hours across the paradigms may

67

differ depending on the curriculum and programming languages students have been exposed to

leading up to coverage of this knowledge area. This document assumes that students have

exposure to an object-oriented programming language leading into this knowledge area.

● Imperative programming is not listed as a separate paradigm to be examined. Instead, it is

treated as a subset of the object-oriented paradigm.

● With multicore computing, cloud computing, and computer networking becoming commonly

available in the market, it has become critical to understand the integration of “distribution,

concurrency, parallelism” along with other programming paradigms as a core area. This

paradigm is integrated with almost all other major programming paradigms.

● With ubiquitous computing and real-time temporal computing applications increasing in daily

human life within domains such as health, transportation, smart homes, it has become important

to cover the software development aspects of event-driven and reactive programming as well as

parallel and distributed computing. A number of topics covered will require and overlap with

concepts in knowledge areas such as Architecture and Organization, Operating Systems, and

Systems Fundamentals.

● Some topics from the Parallel and Distributed Computing knowledge unit are likely to be

integrated within the curriculum with topics from the Parallel and Distributed Programming

knowledge area.

● There is an increasing interest in formal methods to prove program correctness and other

properties. To support this, additional coverage of topics related to formal methods has been

included, but all these topics are identified as Non-core.

● When introducing these topics, it is also important that an instructor provides context for this

material including why we have an interest in programming languages and what they do for us

in terms of providing a human readable version of instructions for a computer to execute.

Core Hours

Knowledge Unit CS Core KA Core

Object-Oriented Programming 4 + 1 (SDF) 1

Functional Programming 4 3

Logic Programming 2 + 1 (MSF)

Shell Scripting 2

Event-Driven and Reactive Programming 2 2

Parallel and Distributed Computing 2 + 1 (PDC) 2

Aspect-Oriented Programming

Type Systems 3 3

68

Systems Execution and Memory Model 2 + 1 (AR and

OS)

Language Translation and Execution 2 3

Program Abstraction and Representation 3

Syntax Analysis

Compiler Semantic Analysis

Program Analysis and Analyzers

Code Generation

Runtime Behavior and Systems

Advanced Programming Constructs

Language Pragmatics

Formal Semantics

Formal Development Methodologies

Design Principles of Programming Languages

Society, Ethics, and the Profession Included in SEP hours

Total 21 19

The CS and KA Core totals do not include the shared hours that have been counted in other knowledge

areas.

Knowledge Units

FPL-OOP: Object-Oriented Programming

CS Core:

1. Imperative programming as a subset of object-oriented programming.

2. Object-oriented design:

a. Decomposition into objects carrying state and having behavior.

b. Class-hierarchy design for modeling.

3. Definition of classes: fields, methods, and constructors. (See also: SDF-Fundamentals)

4. Subclasses, inheritance (including multiple inheritance), and method overriding.

5. Dynamic dispatch: definition of method-call.

6. Exception handling. (See also: SDF-Fundamentals, PDC-Coordination, SE-Construction)

7. Object-oriented idioms for encapsulation:

69

a. Privacy, data hiding, and visibility of class members.

b. Interfaces revealing only method signatures.

c. Abstract base classes, traits and mixins.

8. Dynamic vs static properties.

9. Composition vs inheritance.

10. Subtyping:

a. Subtype polymorphism; implicit upcasts in typed languages.

b. Notion of behavioral replacement: subtypes acting like supertype.

c. Relationship between subtyping and inheritance.

KA Core:

11. Collection classes, iterators, and other common library components.

12. Metaprogramming and reflection.

Illustrative Learning Outcomes:

CS Core:

1. Enumerate the differences between imperative and object-oriented programming paradigms.

2. Compose a class through design, implementation, and testing to meet behavioral requirements.

3. Build a simple class hierarchy utilizing subclassing that allows code to be reused for distinct

subclasses.

4. Predict and validate control flow in a program using dynamic dispatch.

5. Compare and contrast how computational solutions to a problem differ in procedural, functional,

and object-oriented approaches.

6. Compare and contrast mechanisms to define and protect data elements within procedural,

functional, and object-oriented approaches.

7. Compare and contrast the benefits and costs/impact of using inheritance (subclasses) and

composition (specifically, how to base composition on higher order functions).

8. Explain the relationship between object-oriented inheritance (code-sharing and overriding) and

subtyping (the idea of a subtype being usable in a context that expects the supertype).

9. Use object-oriented encapsulation mechanisms such as interfaces and private members.

10. Define and use iterators and other operations on aggregates, including operations that take

functions as arguments, in multiple programming languages, selecting the most natural idioms for

each language. (See also: FPL-Functional)

KA Core:

11. Use collection classes and iterators effectively to solve a problem.

FPL-Functional: Functional Programming

CS Core:

1. Lambda expressions and evaluation: (See also: AL-Models, FPL-Formalism)

a. Variable binding and scope rules. (See also: SDF-Fundamentals)

b. Parameter-passing. (See also: SDF-Fundamentals)

c. Nested lambda expressions and reduction order.

2. Effect-free programming:

70

a. Function calls have no side effects, facilitating compositional reasoning.

b. Immutable variables and data copying vs reduction.

c. Use of recursion vs loops vs pipelining (map/reduce).

3. Processing structured data (e.g., trees) via functions with cases for each data variant:

a. Functions defined over compound data in terms of functions applied to the constituent pieces.

b. Persistent data structures.

4. Using higher-order functions (taking, returning, and storing functions).

KA Core:

5. Metaprogramming and reflection.

6. Function closures (functions using variables in the enclosing lexical environment).

a. Basic meaning and definition – creating closures at run-time by capturing the environment.

b. Canonical idioms: call-backs, arguments to iterators, reusable code via function arguments.

c. Using a closure to encapsulate data in its environment.

d. Lazy versus eager evaluation.

Non-core:

7. Graph reduction machine and call-by-need.

8. Implementing lazy evaluation.

9. Integration with logic programming paradigm using concepts such as equational logic, narrowing,

residuation and semantic unification. (See also: FPL-Logic)

10. Integration with other programming paradigms such as imperative and object-oriented.

Illustrative learning outcomes:

CS Core:

1. Develop basic algorithms that avoid assigning to mutable states or considering reference equality.

2. Develop useful functions that take and return other functions.

3. Compare and contrast how computational solutions to a problem differ in procedural, functional,

and object-oriented approaches.

4. Compare and contrast mechanisms to define and protect data elements within procedural,

functional, and object-oriented approaches.

KA Core:

5. Explain a simple example of lambda expression being implemented using a virtual machine, such

as a SECD machine, showing storage and reclaim of the environment.

6. Correctly interpret variables and lexical scope in a program using function closures.

7. Use functional encapsulation mechanisms such as closures and modular interfaces.

8. Compare and contrast stateful vs stateless execution.

9. Define and use iterators and other operations on aggregates, including operations that take

functions as arguments, in multiple programming languages, selecting the most natural idioms for

each language. (See also: FPL-OOP)

Non-core:

10. Illustrate graph reduction using a λ-expression using a shared subexpression.

71

11. Illustrate the execution of a simple nested λ-expression using an abstract machine, such as an ABC

machine.

12. Illustrate narrowing, residuation, and semantic unification using simple illustrative examples.

13. Illustrate the concurrency constructs using simple programming examples of known concepts such

as a buffer being read and written concurrently or sequentially. (See also: FPL-OOP)

FPL-Logic: Logic Programming

KA Core:

1. Universal vs existential quantifiers. (See also: AI-LRR, MSF-Discrete)

2. First order predicate logic vs higher order logic. (See also: AI-LRR, MSF-Discrete)

3. Expressing complex relations using logical connectives and simpler relations.

4. Definitions of Horn clause, facts, goals and subgoals.

5. Unification and unification algorithm; unification vs assertion vs expression evaluation.

6. Mixing relations with functions. (See also: MSF-Discrete)

7. Cuts, backtracking, and non-determinism.

8. Closed-world vs open-world assumptions.

Non-core:

9. Memory overhead of variable copying in handling iterative programs.

10. Programming constructs to store partial computation and pruning search trees.

11. Mixing functional programming and logic programming using concepts such as equational logic,

narrowing, residuation, and semantic unification. (See also: FPL-Functional)

12. Higher-order, constraint, and inductive logic programming. (See also: AI-LRR)

13. Integration with other programming paradigms such as object-oriented programming.

14. Advance programming constructs such as difference-lists, creating user defined data structures, set

of, etc.

Illustrative learning outcomes:

KA Core:

1. Use a logic language to implement a conventional algorithm.

2. Use a logic language to implement an algorithm employing implicit search using clauses, relations,

and cuts.

3. Use a simple illustrative example to show correspondence between First Order Predicate Logic

(FOPL) and logic programs using Horn clauses.

4. Use examples to illustrate the unification algorithm and its role of parameter-passing in query

reduction.

5. Use simple logic programs interleaving relations, functions, and recursive programming such as

factorial and Fibonacci numbers and simple complex relationships between entities and illustrate

execution and parameter-passing using unification and backtracking.

Non-core:

6. Illustrate computation of simple programs such as Fibonacci and show overhead of recomputation,

and then show how to improve execution overhead.

72

FPL-Scripting: Shell Scripting

CS Core:

1. Error/exception handling

2. Piping (See also: AR-Organization, SF-Overview, OS-Process)

3. System commands (See also: SF-Overview)

a. Interface with operating systems (See also: SF-Overview, OS-Principles)

4. Environment variables (See also: SF-Overview)

5. File abstraction and operators (See also: SDF-Fundamentals, OS-Files, SF-Resource)

6. Data structures, such as arrays and lists. (See also: AL-Foundational, SDF-Fundamentals, SDF-

Data-Structures)

7. Regular expressions (See also: AL-Models)

8. Programs and processes (See also: OS-Process)

9. Workflow

Illustrative learning outcomes:

CS Core:

1. Create and execute automated scripts to manage various system tasks.

2. Solve various text processing problems through scripting.

FPL-Event-Driven: Event-Driven and Reactive Programming

CS Core:

1. Procedural programming vs reactive programming: advantages of reactive programming in

capturing events.

2. Components of reactive programming: event-source, event signals, listeners and dispatchers, event

objects, adapters, event-handlers. (See also: GIT-Interaction, SPD-Web, SPD-Mobile, SPD-Robot,

SPD-Embedded, SPD-Game, SPD-Interactive)

3. Stateless and state-transition models of event-based programming.

4. Canonical uses such as GUIs, mobile devices, robots, servers. (See also: GIT-Interaction, GIT-

Image, SPD-Web, SPD-Mobile, SPD-Robot, SPD-Embedded, SPD-Game, SPD-Interactive)

KA Core:

5. Using a reactive framework:

a. Defining event handlers/listeners

b. Parameterization of event senders and event arguments

c. Externally generated events and program-generated events

6. Separation of model, view, and controller

7. Event-driven and reactive programs as state-transition systems

Illustrative learning outcomes:

CS Core:

1. Implement event handlers for use in reactive systems, such as GUIs.

2. Examine why an event-driven programming style is natural in domains where programs react to

external events.

73

KA Core:

3. Define and use a reactive framework.

4. Describe an interactive system in terms of a model, a view, and a controller.

FPL-Parallel: Parallel and Distributed Computing

CS Core:

1. Safety and liveness (See also: PDC-Evaluation)

a. Race conditions (See also: OS-Concurrency)

b. Dependencies/preconditions

c. Fault models (See also: OS-Faults)

d. Termination (See also: PDC-Coordination)

2. Programming models (See also: PDC-Programs)

One or more of the following:

a. Actor models

b. Procedural and reactive models

c. Synchronous/asynchronous programming models

d. Data parallelism

3. Properties (See also: PDC-Programs, PDC-Coordination)

a. Order-based properties

i. Commutativity

ii. Independence

b. Consistency-based properties

i. Atomicity

ii. Consensus

4. Execution control: (See also: PDC-Coordination, SF-Foundations)

a. Async await

b. Promises

c. Threads

5. Communication and coordination (See also: OS-Process, PDC-Communication, PDC-Coordination)

a. Mutexes

b. Message-passing

c. Shared memory

d. Cobegin-coend

e. Monitors

f. Channels

g. Threads

h. Guards

KA Core:

6. Futures

7. Language support for data parallelism such as forall, loop unrolling, map/reduce

8. Effect of memory-consistency models on language semantics and correct code generation

9. Representational State Transfer Application Programming Interfaces (REST APIs)

74

10. Technologies and approaches: cloud computing, high performance computing, quantum computing,

ubiquitous computing

11. Overheads of message-passing

12. Granularity of program for efficient exploitation of concurrency

13. Concurrency and other programming paradigms (e.g., functional)

Illustrative learning outcomes:

CS Core:

1. Explain why programming languages do not guarantee sequential consistency in the presence of

data races and what programmers must do as a result.

2. Implement correct concurrent programs using multiple programming models, such as shared

memory, actors, futures, synchronization constructs, and data-parallelism primitives.

3. Use a message-passing model to analyze a communication protocol.

4. Use synchronization constructions such as monitor/synchronized methods in a simple program.

5. Modeling data dependency using simple programming constructs involving variables, read and

write.

6. Modeling control dependency using simple constructs such as selection and iteration.

KA Core:

7. Explain how REST API's integrate applications and automate processes.

8. Explain benefits, constraints and challenges related to distributed and parallel computing.

FPL-Aspect: Aspect-Oriented Programming

Non-core:

1. Aspects

2. Join points

3. Advice

a. Before

b. After (as finally, returning or throwing)

c. Around

4. Point cuts

a. Designators

5. Weaving – static and dynamic

6. Alternatives including annotations and IDEs

FPL-Types: Type Systems

CS Core:

1. A type as a set of values together with a set of operations

a. Primitive types (e.g., numbers, Booleans) (See also: SDF-Fundamentals)

b. Compound types built from other types (e.g., records/structs, unions, arrays, lists, functions,

references using set operations) (See also: SDF-Data-Structures)

2. Association of types to variables, arguments, results, and fields

3. Type safety as an aspect of program correctness (See also: FPL-Formalism)

75

4. Type safety and errors caused by using values inconsistently given their intended types

5. Goals and limitations of static and dynamic typing: detecting and eliminating errors as early as

possible.

6. Generic types (parametric polymorphism)

a. Definition and advantages of polymorphism: parametric, subtyping, overloading, and coercion

b. Comparison of monomorphic and polymorphic types

c. Comparison with ad-hoc polymorphism (overloading) and subtype polymorphism

d. Generic parameters and typing

e. Use of generic libraries such as collections

f. Comparison with ad hoc polymorphism (overloading) and subtype polymorphism

g. Prescriptive vs descriptive polymorphism

h. Implementation models of polymorphic types

i. Subtyping

KA Core:

7. Type equivalence: structural vs name equivalence

8. Complementary benefits of static and dynamic typing:

a. Errors early vs errors late/avoided

b. Enforce invariants during code development and code maintenance vs postpone typing

decisions while prototyping and conveniently allow flexible coding patterns such as

heterogeneous collections.

c. Typing rules for function, product, and sum types

d. Avoiding misuse of code vs allowing more code reuse

e. Detect incomplete programs vs allow incomplete programs to run

f. Relationship to static analysis

g. Decidability

Non-core:

9. Compositional type constructors, such as product types (for aggregates), sum types (for unions),

function types, quantified types, and recursive types

10. Type checking

11. Subtyping: (See also: FPL-OOP)

a. Subtype polymorphism; implicit upcasts in typed languages

b. Notion of behavioral replacement: subtypes acting like supertype

c. Relationship between subtyping and inheritance

12. Type safety as preservation plus progress

13. Type inference

14. Static overloading

15. Propositions as types (implication as a function, conjunction as a product, disjunction as a sum)

(See also: FPL-Formalism)

16. Dependent types (universal quantification as dependent function, existential quantification as

dependent product). (See also: FPL-Formalism)

Illustrative learning outcomes:

76

CS Core:

1. Describe, for both a primitive and a compound type, the values that have that type.

2. Describe, for a language with a static type system, the operations that are forbidden statically, such

as passing the wrong type of value to a function or method.

3. Describe examples of program errors detected by a type system.

4. Identify program properties, for multiple programming languages, that are checked statically and

program properties that are checked dynamically.

5. Describe an example program that does not type-check in a particular language and yet would have

no error if run.

6. Use types and type-error messages to write and debug programs.

KA Core:

7. Explain how typing rules define the set of operations that are legal for a type.

8. List the type rules governing the use of a particular compound type.

9. Explain why undecidability requires type systems to conservatively approximate program behavior.

10. Define and use program pieces (such as functions, classes, methods) that use generic types,

including for collections.

11. Discuss the differences among generics, subtyping, and overloading.

12. Explain multiple benefits and limitations of static typing in writing, maintaining, and debugging

software.

Non-core:

13. Define a type system precisely and compositionally.

14. For various foundational type constructors, identify the values they describe and the invariants they

enforce.

15. Precisely describe the invariants preserved by a sound type system.

16. Prove type safety for a simple language in terms of preservation and progress theorems.

17. Implement a unification-based type-inference algorithm for a simple language.

18. Explain how static overloading and associated resolution algorithms influence the dynamic behavior

of programs.

FPL-Systems: Systems Execution and Memory Model

CS Core:

1. Data structures for translation, execution, translation, and code mobility such as stack, heap,

aliasing (sharing using pointers), indexed sequence and string

2. Direct, indirect, and indexed access to memory location

3. Run-time representation of data abstractions such as variables, arrays, vectors, records, pointer-

based data elements such as linked-lists and trees, and objects

4. Abstract low-level machine with simple instruction, stack, and heap to explain translation and

execution

5. Run-time layout of memory: activation record (with various pointers), static data, call-stack, heap

(See also: AR-Memory, OS-Memory)

a. Translating selection and iterative constructs to control-flow diagrams

b. Translating control-flow diagrams to low level abstract code

77

c. Implementing loops, recursion, and tail calls

d. Translating function/procedure calls and return from calls, including different parameter-passing

mechanisms using an abstract machine

6. Memory management: (See also: AR-Memory, OS-Memory)

a. Low level allocation and accessing of high-level data structures such as basic data types, n-

dimensional array, vector, record, and objects

b. Return from procedure as automatic deallocation mechanism for local data elements in the

stack

c. Manual memory management: allocating, de-allocating, and reusing heap memory

d. Automated memory management: garbage collection as an automated technique using the

notion of reachability

7. Green computing. (See also: SEP-Sustainability)

Illustrative learning outcomes:

CS Core:

1. Explain how a core language construct, such as data abstractions and control abstractions, is

executed.

2. Explain how programming language implementations typically organize memory into global data,

text, heap, and stack sections and how features such as recursion and memory management map

to this memory model.

3. Explain why memory leaks and dangling pointer problems occur, and what can be done by a

programmer to avoid/fix them.

FPL-Translation: Language Translation and Execution

CS Core:

1. Execution models for JIT (Just-In-Time), compiler, interpreter

2. Use of intermediate code, e.g., bytecode

3. Limitations and benefits of JIT, compiler, and interpreter

4. Cross compilers/transpilers

5. BNF and extended BNF representation of context-free grammar

6. Parse tree using a simple sentence such as arithmetic expression or if-then-else statement

7. Execution as native code or within a virtual machine

8. Language translation pipeline: syntax analysis, parsing, optional type-checking, translation/code

generation and optimization, linking, loading, execution

KA Core:

9. Run-time representation of core language constructs such as objects (method tables) and first-class

functions (closures)

10. Secure compiler development (See also: SEC-Foundations, SEC-Coding)

Illustrative learning outcomes:

CS Core:

1. Explain and understand the differences between compiled, JIT, and interpreted language

implementations, including the benefits and limitations of each.

78

2. Differentiate syntax and parsing from semantics and evaluation.

3. Use BNF and extended BNF to specify the syntax of simple constructs such as if-then-else, type

declaration and iterative constructs for known languages such as C++ or Python.

4. Illustrate the parse tree using a simple sentence/arithmetic expression.

5. Illustrate translation of syntax diagrams to BNF/extended BNF for simple constructs such as if-then-

else, type declaration, iterative constructs, etc.

6. Illustrate ambiguity in parsing using nested if-then-else/arithmetic expression and show resolution

using precedence order.

KA-Core:

7. Discuss the benefits and limitations of garbage collection, including the notion of reachability.

FPL-Abstraction: Program Abstraction and Representation

KA Core:

1. BNF and regular expressions

2. Programs that take (other) programs as input such as interpreters, compilers, type-checkers,

documentation generators

3. Components of a language:

a. Definitions of alphabets, delimiters, sentences, syntax, and semantics

b. Syntax vs semantics

4. Program as a set of non-ambiguous meaningful sentences

5. Basic programming abstractions: constants, variables, declarations (including nested declarations),

command, expression, assignment, selection, definite and indefinite iteration, iterators, function,

procedure, modules, exception handling (See also: SDF-Fundamentals)

6. Mutable vs immutable variables: advantages and disadvantages of reusing existing memory

location vs advantages of copying and keeping old values; storing partial computation vs

recomputation

7. Types of variables: static, local, nonlocal, global; need and issues with nonlocal and global

variables.

8. Scope rules: static vs dynamic; visibility of variables; side-effects.

9. Side-effects induced by nonlocal variables, global variables and aliased variables.

Non-core:

10. L-values and R-values: mapping mutable variable-name to L-values; mapping immutable variable-

names to R-values

11. Environment vs store and their properties

12. Data and control abstraction

13. Mechanisms for information exchange between program units such as procedures, functions, and

modules: nonlocal variables, global variables, parameter-passing, import-export between modules

14. Data structures to represent code for execution, translation, or transmission.

15. Low level instruction representation such as virtual machine instructions, assembly language, and

binary representation (See also: AR-Representation, AR-Assembly)

16. Lambda calculus, variable binding, and variable renaming. (See also: AL-Models, FPL-Formalism)

79

17. Types of semantics: operational, axiomatic, denotational, behavioral; define and use abstract

syntax trees; contrast with concrete syntax.

Illustrative learning outcomes:

KA Core:

1. Illustrate the scope of variables and visibility using simple programs.

2. Illustrate different types of parameter-passing using simple pseudo programming language.

3. Explain side-effect using global and nonlocal variables and how to fix such programs.

4. Explain how programs that process other programs treat the other programs as their input data.

5. Describe a grammar and an abstract syntax tree for a small language.

6. Describe the benefits of having program representations other than strings of source code.

7. Implement a program to process some representation of code for some purpose, such as an

interpreter, an expression optimizer, or a documentation generator.

FPL-Syntax: Syntax Analysis

Non-core:

1. Regular grammars vs context-free grammars (See also: AL-Models)

2. Scanning and parsing based on language specifications

3. Lexical analysis using regular expressions

4. Tokens and their use

5. Parsing strategies including top-down (e.g., recursive descent, or LL) and bottom-up (e.g., LR or

GLR) techniques

a. Lookahead tables and their application to parsing

6. Language theory:

a. Chomsky hierarchy (See also: AL-Models)

b. Left-most/right-most derivation and ambiguity

c. Grammar transformation

7. Parser error recovery mechanisms

8. Generating scanners and parsers from declarative specifications

Illustrative learning outcomes:

Non-core:

1. Use formal grammars to specify the syntax of languages.

2. Illustrate the role of lookahead tables in parsing.

3. Use declarative tools to generate parsers and scanners.

4. Recognize key issues in syntax definitions: ambiguity, associativity, precedence.

FPL-Semantics: Compiler Semantic Analysis

Non-core:

1. Abstract syntax trees; contrast with concrete syntax

2. Defining, traversing, and modifying high-level program representations

3. Scope and binding resolution

4. Static semantics

80

a. Type checking.

b. Define before use

c. Annotation and extended static checking frameworks.

5. L-values/R-values (See also: SDF-Fundamentals)

6. Call semantics

7. Types of parameter-passing with simple illustrations and comparison: call by value, call by

reference, call by value-result, call by name, call by need and their variations

8. Declarative specifications such as attribute grammars and their applications in handling limited

context-base grammar

Illustrative learning outcomes:

Non-core:

1. Draw the abstract syntax tree for a small language.

2. Implement context-sensitive, source-level static analyses such as type-checkers or resolving

identifiers to identify their binding occurrences.

3. Describe semantic analyses using an attribute grammar.

FPL-Analysis: Program Analysis and Analyzers

Non-core:

4. Relevant program representations, such as basic blocks, control-flow graphs, def-use chains, and

static single assignment

5. Undecidability and consequences for program analysis

6. Flow-insensitive analysis, such as type-checking and scalable pointer and alias analysis

7. Flow-sensitive analysis, such as forward and backward dataflow analyses

8. Path-sensitive analysis, such as software model checking and software verification

9. Tools and frameworks for implementing analyzers

10. Role of static analysis in program optimization and data dependency analysis during exploitation of

concurrency (See also: FPL-Code)

11. Role of program analysis in (partial) verification and bug-finding (See also: FPL-Code)

12. Parallelization:

a. Analysis for auto-parallelization

b. Analysis for detecting concurrency bugs

Illustrative learning outcomes:

Non-core:

1. Explain the difference between dataflow graph and control flow graph.

2. Explain why non-trivial sound program analyses must be approximate.

3. Argue why an analysis is correct (sound and terminating).

4. Explain why potential aliasing limits sound program analysis and how alias analysis can help.

5. Use the results of a program analysis for program optimization and/or partial program correctness.

FPL-Code: Code Generation

Non-core:

81

1. Instruction sets (See also: AR-Assembly)

2. Control flow

3. Memory management (See also: AR-Memory, OS-Memory)

4. Procedure calls and method dispatching

5. Separate compilation; linking

6. Instruction selection

7. Instruction scheduling (e.g., pipelining)

8. Register allocation

9. Code optimization as a form of program analysis (See also: FPL-Analysis)

10. Program generation through generative AI

Illustrative learning outcomes:

Non-core:

1. Identify all essential steps for automatically converting source code into assembly or other low-level

languages.

2. Explain the low-level code necessary for calling functions/methods in modern languages.

3. Discuss why separate compilation requires uniform calling conventions.

4. Discuss why separate compilation limits optimization because of unknown effects of calls.

5. Discuss opportunities for optimization introduced by naive translation and approaches for achieving.

optimization, such as instruction selection, instruction scheduling, register allocation, and peephole

optimization.

FPL-Run-Time: Run-time Behavior and Systems

Non-core:

1. Process models using stacks and heaps to allocate and deallocate activation records and

recovering environments using frame pointers and return addresses during a procedure call

including parameter-passing examples

2. Schematics of code lookup using hash tables for methods in implementations of object-oriented

programs

3. Data layout for objects and activation records

4. Object allocation in heap

5. Implementing virtual entities and virtual methods; virtual method tables and their application

6. Run-time behavior of object-oriented programs

7. Compare and contrast allocation of memory during information exchange using parameter-passing

and non-local variables (using chain of static links).

8. Dynamic memory management approaches and techniques: malloc/free, garbage collection (mark-

sweep, copying, reference counting), regions (also known as arenas or zones)

9. Just-in-time compilation and dynamic recompilation

10. Interface to operating system (e.g., for program initialization)

11. Interoperability between programming languages including parameter-passing mechanisms and

data representation (See also: AR-Representation)

a. Big endian, little endian

b. Data layout of composite data types such as arrays

12. Other common features of virtual machines, such as class loading, threads, and security checking

82

13. Sandboxing

Illustrative learning outcomes:

Non-core:

1. Discuss benefits and limitations of automatic memory management.

2. Explain the use of metadata in run-time representations of objects and activation records, such as

class pointers, array lengths, return addresses, and frame pointers.

3. Compare and contrast static allocation vs stack-based allocation vs heap-based allocation of data

elements.

4. Explain why some data elements cannot be automatically deallocated at the end of a

procedure/method call (need for garbage collection).

5. Discuss advantages, disadvantages, and difficulties of just-in-time and dynamic recompilation.

6. Discuss the use of sandboxing in mobile code.

7. Identify the services provided by modern language run-time systems.

FPL-Constructs: Advanced Programming Constructs

Non-core:

1. Encapsulation mechanisms

2. Lazy evaluation and infinite streams

3. Compare and contrast lazy evaluation vs eager evaluation

4. Unification vs assertion vs expression evaluation

5. Control abstractions: exception handling, continuations, monads.

6. Object-oriented abstractions: multiple inheritance, mixins, traits, multimethods

7. Metaprogramming: macros, generative programming, model-based development

8. String manipulation via pattern-matching (regular expressions)

9. Dynamic code evaluation ("eval")

10. Language support for checking assertions, invariants, and pre/post-conditions

11. Domain specific languages, such as database languages, data science languages, embedded

computing languages, synchronous languages, hardware interface languages

12. Massive parallel high performance computing models and languages

Illustrative learning outcomes:

Non-core:

1. Use various advanced programming constructs and idioms correctly.

2. Discuss how various advanced programming constructs aim to improve program structure, software

quality, and programmer productivity.

3. Discuss how various advanced programming constructs interact with the definition and

implementation of other language features.

FPL-Pragmatics: Language Pragmatics

Non-core:

1. Effect of technology needs and software requirements on programming language development and

evolution

83

2. Problem domains and programming paradigm

3. Criteria for good programming language design

a. Principles of language design such as orthogonality

b. Defining control and iteration constructs

c. Modularization of large software

4. Evaluation order, precedence, and associativity

5. Eager vs delayed evaluation

6. Defining control and iteration constructs

7. External calls and system libraries

Illustrative learning outcomes:

Non-core:

1. Discuss the role of concepts such as orthogonality and well-chosen defaults in language design.

2. Objectively evaluate and justify language-design decisions.

3. Implement an example program whose result can differ under different rules for evaluation order,

precedence, or associativity.

4. Illustrate uses of delayed evaluation, such as user-defined control abstractions.

5. Discuss the need for allowing calls to external calls and system libraries and the consequences for

language implementation.

FPL-Formalism: Formal Semantics

Non-core:

1. Syntax vs semantics

2. Approaches to semantics: axiomatic, operational, denotational, type-based

3. Axiomatic semantics of abstract constructs such as assignment, selection, iteration using pre-

condition, post-conditions, and loop invariant

4. Operational semantics analysis of abstract constructs and sequence of such as assignment,

expression evaluation, selection, iteration using environment and store

a. Symbolic execution

b. Constraint checkers

5. Denotational semantics

a. Lambda Calculus. (See also: AL-Models, FPL-Functional)

6. Proofs by induction over language semantics

7. Formal definitions and proofs for type systems (See also: FPL-Types)

a. Propositions as types (implication as a function, conjunction as a product, disjunction as a sum)

b. Dependent types (universal quantification as dependent function, existential quantification as

dependent product)

c. Parametricity

Illustrative learning outcomes:

Non-core:

1. Construct formal semantics for a small language.

2. Write a lambda-calculus program and show its evaluation to a normal form.

3. Discuss the different approaches of operational, denotational, and axiomatic semantics.

84

4. Use induction to prove properties of all programs in a language.

5. Use induction to prove properties of all programs in a language that is well-typed according to a

formally defined type system.

6. Use parametricity to establish the behavior of code given only its type.

FPL-Methodologies: Formal Development Methodologies

1. Formal specification languages and methodologies

2. Theorem provers, proof assistants, and logics

3. Constraint checkers (See also: FPL-Formalism)

4. Dependent types (universal quantification as dependent function, existential quantification as

dependent product) (See also: FPL-Types, FPL-Formalism)

5. Specification and proof discharge for fully verified software systems using pre/post conditions,

refinement types, etc.

6. Formal modeling and manual refinement/implementation of software systems.

7. Use of symbolic testing and fuzzing in software development.

8. Model checking.

9. Understanding of situations where formal methods can be effectively applied and how to structure

development to maximize their value.

Illustrative learning outcomes:

Non-core:

1. Use formal modeling techniques to develop and validate architectures.

2. Use proof assisted programming languages to develop fully specified and verified software artifacts.

3. Use verifier and specification support in programming languages to formally validate system

properties.

4. Integrate symbolic validation tooling into a programming workflow.

5. Discuss when and how formal methods can be effectively used in the development process.

FPL-Design: Design Principles of Programming Languages

Non-core:

1. Language design principles

a. Simplicity

b. Security (See also: SEC-Coding)

c. Fast translation

d. Efficient object code

e. Orthogonality

f. Readability

g. Completeness

h. Implementation strategies

2. Designing a language to fit a specific domain or problem

3. Interoperability between programming languages

4. Language portability

5. Formal description of a programming language

85

6. Green computing principles (See also: SEP-Sustainability)

Illustrative Learning Outcomes:

Non-core:

1. Understand what constitutes good language design and apply that knowledge to evaluate a real

programming language.

FPL-SEP: Society, Ethics, and the Profession

Non-core:

1. Impact of English-centric programming languages

2. Enhancing accessibility and inclusivity for people with disabilities – Supporting assistive

technologies

3. Human factors related to programming languages and usability

a. Impact of syntax on accessibility

b. Supporting cultural differences (e.g., currency, decimals, dates)

c. Neurodiversity

4. Etymology of terms such as “class,” “master,” and “slave” in programming languages

5. Increasing accessibility by supporting multiple languages within applications (UTF)

Illustrative learning outcomes:

Non-core:

1. Consciously design programming languages to be inclusive and non-offensive.

Professional Dispositions

1. Professional: Students must demonstrate and apply the highest standards when using

programming languages and formal methods to build safe systems that are fit for their purpose.

2. Meticulous: Attention to detail is essential when using programming languages and applying

formal methods.

3. Inventive: Programming and approaches to formal proofs is inherently a creative process, students

must demonstrate innovative approaches to problem solving. Students are accountable for their

choices regarding the way a problem is solved.

4. Proactive: Programmers are responsible for anticipating all forms of user input and system

behavior and to design solutions that address each one.

5. Persistent: Students must demonstrate perseverance since the correct approach is not always

self-evident and a process of refinement may be necessary to reach the solution.

Mathematics Requirements

Required:

● Discrete Mathematics – Boolean algebra, proof techniques, digital logic, sets and set

operations, mapping, functions and relations, states and invariants, graphs and relations, trees,

counting, recurrence relations, finite state machine, regular grammar. (See also: MSF-Discrete)

86

● Logic – propositional logic (negations, conjunctions, disjunctions, conditionals, biconditionals),

first-order logic, logical reasoning (induction, deduction, abduction). (See also: MSF-Discrete)

● Mathematics – Matrices, probability, statistics. (See also: MSF-Probability, MSF-Statistics)

Course Packaging Suggestions
Course

Two example courses are presented illustrating how the content may be covered. The first is an

introductory course which covers the CS Core and KA Core content. This course focuses on the

different programming paradigms and ensures familiarity with each to a level sufficient to be able to

decide which paradigm is appropriate in each circumstance.

The second course is an advanced course focused on the implementation of a programming language,

the formal description of a programming language and a formal description of the behavior of a

program.

While these two courses have been the predominant way to cover this knowledge area over the past

decade, it is by no means the only way that this content can be covered. Institutions can, for example,

choose to cover only the CS Core content (24 hours) as part of one or spread over multiple courses

(e.g., Software Engineering). Natural combinations are easily identifiable since they are the areas in

which the Foundations of Programming Languages knowledge area overlaps with other knowledge

areas. Such overlaps have been identified throughout this knowledge area.

Programming Language Concepts (Introduction) Course to include the following:

● FPL-OOP: Object-Oriented Programming (6 hours)

● FPL-Functional: Functional Programming (7 hours)

● FPL-Logic: Logic Programming (3 hours)

● FPL-Scripting: Shell Scripting (2 hours)

● FPL-Event-Driven: Event-Driven and Reactive Programming (4 hours)

● FPL-Parallel: Parallel and Distributed Computing (5 hours)

● FPL-Types: Type Systems (6 hours)

● FPL-Systems: Systems Execution and Memory Model (3 hours)

● FPL-Translation: Language Translation and Execution (5 hours)

● FPL-Abstraction: Program Abstraction and Representation (3 hours)

● FPL-SEP: Society, Ethics, and the Profession (1 hour)

Prerequisites:

● Discrete Mathematics – Boolean algebra, proof techniques, digital logic, sets and set

operations, mapping, functions and relations, states and invariants, graphs and relations, trees,

counting, recurrence relations, finite state machine, regular grammar. (See also: MSF-Discrete).

Programming Language Implementation (Advanced) Course to include the following:

● FPL-Types: Type Systems (3 hours)

● FPL-Translation: Language Translation and Execution (2 hours)

● FPL-Syntax: Syntax Analysis(3 hours)

87

● FPL-Semantics: Compiler Semantic Analysis (5 hours)

● FPL-Analysis: Program Analysis and Analyzers (5 hours)

● FPL-Code: Code Generation(5 hours)

● FPL-Run-Time: Run-time Systems (4 hours)

● FPL-Constructs: Advanced Programming Constructs (4 hours)

● FPL-Pragmatics: Language Pragmatics (3 hours)

● FPL-Formalism: Formal Semantics (5 hours)

● FPL-Methodologies: Formal Development Methodologies (5 hours)

Prerequisites:

● Discrete mathematics – Boolean algebra, proof techniques, digital logic, sets and set

operations, mapping, functions and relations, states and invariants, graphs and relations, trees,

counting, recurrence relations, finite state machine, regular grammar (See also: MSF-Discrete).

● Logic – propositional logic (negations, conjunctions, disjunctions, conditionals, biconditionals),

first-order logic, logical reasoning (induction, deduction, abduction). (See also: MSF-Discrete).

● Introductory programming course (See also: SDF-Fundamentals).

● Programming proficiency in programming concepts such as: (See also: SDF-Fundamentals):

● Type declarations such as basic data types, records, indexed data elements such as arrays

and vectors, and class/subclass declarations, types of variables

● Scope rules of variables

● Selection and iteration concepts, function and procedure calls, methods, object creation

● Data structure concepts such as: (See also: SDF-DataStructures):

● Abstract data types, sequence and string, stack, queues, trees, dictionaries (See also: SDF-

Data-Structures)

● Pointer-based data structures such as linked lists, trees, and shared memory locations (See

also: SDF-Data-Structures, AL-Foundational)

● Hashing and hash tables (See also: SDF-Data-Structures, AL-Foundational)

● System fundamentals and computer architecture concepts such as (See also: SF-Foundations):

● Digital circuits design, clocks, bus (See also: OS-Principles)

● registers, cache, RAM, and secondary memory (See also: OS-Memory)

● CPU and GPU (See also: AR-Heterogeneity)

● Basic knowledge of operating system concepts such as

● Interrupts, threads and interrupt-based/thread-based programming (See also: OS-

Concurrency)

● Scheduling, including prioritization (See also: OS-Scheduling)

● Memory fragmentation (See also: OS-Memory)

● Latency

Committee

Chair: Michael Oudshoorn, High Point University, High Point, NC, USA

Members:

● Annette Bieniusa, TU Kaiserslautern, Kaiserslautern, Germany

● Brijesh Dongol, University of Surrey, Guildford, UK

88

● Michelle Kuttel, University of Cape Town, Cape Town, South Africa

● Doug Lea, State University of New York at Oswego, Oswego, NY, USA

● James Noble, Victoria University of Wellington, Wellington, New Zealand

● Mark Marron, Microsoft Research, Seattle, WA, USA and University of Kentucky, Lexington, KY,

USA

● Peter-Michael Osera, Grinnell College, Grinnell, IA, USA

● Michelle Mills Strout, University of Arizona, Tucson, AZ, USA

Contributors:

● Alan Dearle, University of St. Andrews, St. Andrews, Scotland

89

Graphics and Interactive Techniques (GIT)

Preamble

Computer graphics is the term used to describe the computer generation and manipulation of images

and can be viewed as the science of enabling visual communication through computation. Its

application domains include animation, Computer Generated Imagery (CGI) and Visual Effects (VFX);

engineering; machine learning; medical imaging; scientific, information, and knowledge visualization;

simulators; special effects; user interfaces; and video games. Traditionally, graphics at the

undergraduate level focused on rendering, linear algebra, physics, the graphics pipeline, interaction,

and phenomenological approaches. Today’s graphics courses increasingly include data science,

physical computing, animation, and haptics. Thus, the knowledge area (KA) expanded beyond core

image-based computer graphics. At the advanced level, undergraduate institutions are more likely to

offer one or several courses specializing in a specific graphics knowledge unit (KU) or topic: e.g.,

gaming, animation, visualization, tangible or physical computing, and immersive courses such as

Augmented Reality (AR)/Virtual Reality (VR)/eXtended Reality (XR). There is considerable connection

with other computer science knowledge areas (KAs): Algorithmic Foundations, Architecture and

Organization, Artificial Intelligence; Human-Computer Interaction; Parallel and Distributed Computing;

Specialized Platform Development; Software Engineering; and Society, Ethics, and the Profession.

For students to become adept at the use and generation of computer graphics and interactive

techniques, many issues must be addressed, such as human perception and cognition, data and image

file formats, display specifications and protocols, hardware interfaces, and application program

interfaces (APIs). Unlike other knowledge areas, knowledge units within Graphics and Interactive

Techniques may be included in a variety of elective courses. Alternatively, graphics topics may be

introduced in an applied project in courses primarily covering human computer interaction, embedded

systems, web development, introductory programming courses, etc. Undergraduate computer science

students who study the knowledge units specified below through a balance of theory and applied

instruction will be able to understand, evaluate, and/or implement the related graphics and interactive

techniques as users and developers. Because technology changes rapidly, the Graphics and

Interactive Techniques subcommittee attempted to avoid being overly prescriptive. Any examples of

APIs, programs, and languages should be considered as appropriate examples in 2023. In effect, this is

a snapshot in time.

Graphics as a knowledge area has expanded and become pervasive since the CS2013 report.

AR/VR/XR, artificial intelligence, computer vision, data science, machine learning, and interfaces driven

by embedded sensors in everything from cars to coffee makers use graphics and interactive

techniques. The now ubiquitous smartphone has made much of the world’s population regular users

and creators of graphics, digital images, and the interactive techniques to manipulate them. Animations,

games, visualizations, and immersive applications that ran on desktops in 2013, now can run on mobile

devices. The amount of stored digital data grew exponentially since 2013, and both data and

visualizations are now published by myriad sources including news media and scientific organizations.

Revenue from mobile video games now exceeds that of music and movies combined [1]. CGI and VFX

are employed in almost all films, animations, TV productions, advertising, and business graphics. The

90

number of people who create graphics has skyrocketed, as have the number of applications and

generative tools used to produce graphics.

It is critical that students and faculty confront the ethical issues, questions, and conundrums that have

arisen and will continue to arise in and because of applications in computer graphics. Today’s

headlines unfortunately already provide examples of inequity and/or wrong-doing in autonomous

navigation, deepfakes, computational photography, generative images, and facial recognition.

Overview of Knowledge Units

The following knowledge units are included in Graphics and Interactive Techniques. Descriptions are

included below where they are not explicitly evident from the title. Graphics as a knowledge area is

unique in that many of its knowledge units can and are taught as stand-alone courses where

implementation projects are critical to student mastery. Apart from Applied Rendering and Techniques

which scaffolds the typical undergraduate interactive computer graphics course, the other knowledge

unit are more specialized. To be consistent with the design of CS2023 those knowledge unit are limited

to two weeks of instruction, corresponding roughly to 6 hours of instruction. This limitation allows a two-

week knowledge unit to be added to a course. Due to that time restriction, we list their Core Topic skill

levels in most of the knowledge units as “Explain.” However, if one of the thematic knowledge units is

implemented as a full-term course, our expectation is that the skill levels will rise to “Apply” or “Develop”

which is reflected in many of the practical illustrative learning outcomes. This is not meant to be

prescriptive but to encourage customization. How to implement a knowledge unit is left to the discretion

of the instructor. If given a two-week constraint to teach one of the thematic knowledge units, many of

us would choose to limit the topics and include an applied project. Our hope is that an inclusive list of

topics will help faculty design a course that best meets their and their department’s pedagogical goals.

● GIT-Fundamentals: Fundamental Concepts. For nearly every computer scientist and

software developer, understanding of how humans interact with machines is essential.

● GIT-Visualization: Visualization. Visualization seeks to determine and present underlying

correlated structures and relationships in data sets from a wide variety of application areas. The

prime objective is to communicate the information in a way which enhances understanding.

● GIT-Rendering: Applied Rendering and Techniques. This unit includes basic rendering and

fundamental graphics techniques that nearly every undergraduate course in graphics will cover

and that are essential for further study in most graphics-related courses.

● GIT-Modeling: Geometric Modeling. Graphics must be encoded in computer memory, often in

the form of a mathematical specification of shape and form.

● GIT-Shading: Shading and Advanced Rendering. This unit contains more in-depth coverage

of rendering topics.

● GIT-Animation: Computer Animation. Computer Animation is concerned with the generation

of moving imagery.

● GIT-Simulation: Simulation. Simulation has strong ties to Computational Science. However, in

the graphics domain, simulation techniques are re-purposed to a different end. Rather than

creating predictive models, the goal instead is to achieve a mixture of physical plausibility and

91

artistic intention. To illustrate, the goals of “model surface tension in a liquid” and “produce a

crown splash” are related, but different. Depending on the simulation goals, covered topics may

vary as shown.

● Particle systems

○ Integration methods (Forward Euler, Midpoint, Leapfrog)

● Rigid Body Dynamics

○ Particle systems

○ Collision Detection

○ Triangle/point

○ Edge/edge

● Cloth

○ Particle systems

○ Mass/spring networks

○ Collision Detection

● Particle-Based Water

○ Integration methods

○ Smoother Particle Hydrodynamics (SPH) Kernels

○ Signed Distance Function-Based Collisions

● Grid-Based Smoke and Fire

○ Semi-Lagrangian Advection

○ Pressure Projection

● Grid and Particle-Based Water

○ Particle-Based Water

● Grid-Based Smoke and Fire

○ Semi-Lagrangian Advection

○ Pressure Projection

● Grid and Particle-Based Water

○ Particle-Based Water

○ Grid-Based Smoke, and Fire

● GIT-Immersion: Immersion. Immersion includes Augmented Reality (AR), Virtual Reality (VR),

and Mixed Reality (MR).

● GIT-Interaction: Interaction. Interactive computer graphics is a requisite part of real-time

applications ranging from the utilitarian-like word processors to virtual and/or augmented reality

applications.

● GIT-Image: Image Processing. Image Processing consists of the analysis and processing of

images for multiple purposes, but most frequently to improve image quality and to manipulate

imagery. It lies at the cornerstone of computer vision.

● GIT-Physical: Tangible/Physical Computing. Tangible/Physical Computing refers to

microcontroller-based interactive systems that detect and respond to sensor input.

● GIT-SEP: Society, Ethics, and the Profession.

92

Changes since CS2013

In order to align CS2013’s Graphics and Visualization areas with the ACM Special Interest Group on

Graphic and Interactive Techniques (SIGGRAPH) and to reflect the natural expansion of the field to

include haptic and physical computing in addition to images, we have renamed it Graphics and

Interactive Techniques (GIT). To capture the expanded footprint of the knowledge area , the following

five knowledge units have been added to the original list consisting of Fundamental Concepts,

Visualization, Basic Rendering (renamed Rendering), Geometric Modeling, Advanced Rendering

(renamed Shading), and Computer Animation.

● Immersion (MR, AR, VR)

● Interaction

● Image Processing

● Tangible/Physical Computing

● Simulation

Core Hours

Knowledge Unit CS Core KA Core

Fundamental Concepts 4 3

Visualization 6

Applied Rendering and

Techniques

 15

Geometric Modeling 6

Shading and Advanced

Rendering

 6

Computer Animation 6

Simulation 6

Immersion (MR, AR, VR) 6

Interaction 4

Image Processing 6

Tangible/Physical Computing 6

Society, Ethics, and the

Profession

Included in SEP hours

93

Total 4

Knowledge Units

GIT-Fundamentals: Fundamental Concepts

CS Core:

1. Uses of computer graphics and interactive techniques and their potential risks and abuses.

a. Entertainment, business, and scientific applications: e.g., visual effects, generative imagery,

computer vision, machine learning, user interfaces, video editing, games and game engines,

computer-aided design and manufacturing, data visualization, and virtual/augmented/mixed

reality

b. Intellectual property, deep fakes, facial recognition, privacy (See also: SEP-DEIA, SEP-Privacy,

SEP-IP, SEP-Professional-Ethics)

2. Graphic output

a. Displays (e.g., LCD)

b. Printers

c. Analog film

d. Concepts

i. Resolution (e.g., pixels, dots)

ii. Aspect ratio

iii. Frame rate

3. Human vision system

a. Tristimulus reception (RGB)

b. Eye as a camera (projection)

c. Persistence of vision (frame rate, motion blur)

d. Contrast (detection, Mach banding, dithering/aliasing)

e. Non-linear response (dynamic range, tone mapping)

f. Binocular vision (stereo)

g. Accessibility (color deficiency, strobing, monocular vision, etc.) (See also: SEP-DEIA, HCI-User)

4. Standard image formats

a. Raster

i. Lossless (e.g., TIF)

ii. Lossy (e.g., JPG, GIF, etc.)

b. Vector (e.g., SVG, Adobe Illustrator)

5. Digitization of analog data

a. Rasterization

b. Resolution

c. Sampling and quantization

6. Color models: additive (RGB), subtractive (CMYK), and color perception (HSV)

7. Tradeoffs between storing image data and re-computing image data

8. Spatialization: coordinate systems, absolute and relative positioning

9. Animation as a sequence of still images

https://docs.google.com/document/d/1EuuEjrO4ape0VpDIsMIq7xgc3hFWP6BR/edit#heading=h.1fob9te

94

KA Core:

10. Applied interactive graphics (e.g., processing, python)

11. Display characteristics (protocols and ports)

Illustrative Learning Outcomes:

CS Core:

1. Identify common uses of digital presentation to humans (e.g., computer graphics, sound).

2. Describe how analog signals can be reasonably represented by discrete samples, for example, how

images can be represented by pixels.

3. Compute the memory requirement for storing a color image given its resolution.

4. Create a graphic depicting how the limits of human perception affect choices about the digital

representation of analog signals.

5. Indicate when and why you should use each of the following common file formats: JPG, PNG, MP3,

MP4, and GIF.

6. Describe color models and their use in graphics display devices.

7. Compute the memory requirements for a multi-second movie (lasting n seconds) displaying at a

specific framerate (f frames per second) at a specified resolution (r pixels per frame)

8. Compare and contrast digital video to analog video.

9. Describe the basic process of producing continuous motion from a sequence of discrete frames

(sometimes called “flicker fusion”).

10. Describe a possible visual misrepresentation that could result from digitally sampling an analog

world.

11. Compute memory space requirements based on resolution and color coding.

12. Compute time requirements based on refresh rates and rasterization techniques.

KA Core:

13. Design a user interface and an alternative for persons with color perception deficiency.

14. Construct a simple graphical user interface using a graphics library.

GIT-Visualization: Visualization

KA Core:

1. Scientific Data Visualization and Information Visualization

2. Visualization techniques

a. Statistical visualization (e.g., scatterplots, bar graphs, histograms, line graphs, pie charts, trees,

and graphs)

b. Text visualization

c. Geospatial visualization

d. 2D/3D scalar fields

e. Vector fields

f. Direct volume rendering

3. Visualization pipeline

a. Structuring data

b. Mapping data to visual representations (e.g., scales, grammar of graphics)

c. View transformations (e.g., pan, zoom, filter, select)

95

4. Common data formats (e.g., HDF, netCDF, geotiff, GeoJSON, shape files, raw binary, JSON, CSV,

plain text)

5. High-dimensional data handling techniques

a. Statistical (e.g., averaging, clustering, filtering)

b. Perceptual (e.g., multi-dimensional vis, parallel coordinates, trellis plots)

6. Perceptual and cognitive foundations that drive visual abstractions.

a. Human optical system

b. Color theory

c. Gestalt theories

7. Design and evaluation of visualizations

a. Purpose (e.g., analysis, communication, aesthetics)

b. Accessibility

c. Appropriateness of encodings

d. Misleading visualizations

Illustrative Learning Outcomes:

KA Core:

1. Compare and contrast data visualization and information visualization.

2. Deploy basic algorithms for visualization.

3. Compare the tradeoffs of visualization algorithms in terms of accuracy and performance.

4. Design a suitable visualization for a particular combination of data characteristics, application tasks,

and audience.

5. Analyze the effectiveness of a given visualization for a particular task.

6. Design a process to evaluate the utility of a visualization algorithm or system.

7. Identify a variety of applications of visualization including representations of scientific, medical, and

mathematical data; flow visualization; and spatial analysis.

GIT-Rendering: Applied Rendering and Techniques

KA Core: (See also: SPD-Game)

1. Object and scene modeling

a. Object representations: polygonal, parametric, etc.

b. Modeling transformations: affine and coordinate-system transformations

c. Scene representations: scene graphs

2. Camera and projection modeling

a. Pinhole cameras, similar triangles, and projection model

b. Camera models

c. Projective geometry

3. Radiometry and light models

a. Radiometry

b. Rendering equation

c. Rendering in nature – emission and scattering, etc.

4. Rendering

a. Simple triangle rasterization

b. Rendering with a shader-based API

96

c. Visibility and occlusion, including solutions to this problem (e.g., depth buffering, Painter’s

algorithm, and ray tracing)

d. Texture mapping, including minification and magnification (e.g., trilinear MIP mapping)

e. Application of spatial data structures to rendering.

f. Ray tracing

g. Sampling and anti-aliasing

Illustrative Learning Outcomes:

KA Core:

1. Describe and illustrate the light transport problem (i.e., light is emitted, scatters around the scene,

and is measured by the eye).

2. Describe the basic rendering pipeline.

3. Compare and contrast how forward and backwards rendering factor into the graphics pipeline.

4. Create a program to display 2D shapes in a window.

5. Create a program to display 3D models.

6. Produce linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1).

7. Compute two-dimensional and 3-dimensional points by applying affine transformations.

8. Indicate the changes required to extend 2D transformation operations to handle transformations in

3D.

9. Define texture mapping, sampling, and anti-aliasing, and describe examples of each.

10. Compare ray tracing and rasterization for the visibility problem.

11. Construct a program that performs transformation and clipping operations on simple two-

dimensional shapes.

12. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL, webGL) using

vertex buffers and shaders.

13. Compare and contrast the different rendering techniques.

14. Compare and contrast the difference in transforming the camera vs the models.

GIT-Modeling: Geometric Modeling

KA Core:

1. Basic geometric operations such as intersection calculation and proximity tests on 2D objects

2. Surface representation/model

a. Tessellation

b. Mesh representation, mesh fairing, and mesh generation techniques such as Delaunay

triangulation, and marching cubes/tetrahedrons

c. Parametric polynomial curves and surfaces

d. Implicit representation of curves and surfaces

e. Spatial subdivision techniques

3. Volumetric representation/model

a. Volumes, voxels, and point-based representations.

b. Signed Distance Fields

c. Sparse Volumes, i.e., VDB

d. Constructive Solid Geometry (CSG) representation

4. Procedural representation/model

97

a. Fractals

b. L-Systems

5. Multi-resolution modeling (See also: SPD-Game)

6. Reconstruction, e.g., 3D scanning, photogrammetry

Illustrative Learning Outcomes:

KA Core:

1. Contrast representing curves and surfaces in both implicit and parametric forms.

2. Create simple polyhedral models by surface tessellation.

3. Create a mesh representation from an implicit surface.

4. Create a fractal model or terrain using a procedural method.

5. Create a mesh from data points acquired with a laser scanner.

6. Create CSG models from simple primitives, such as cubes and quadric surfaces.

7. Contrast modeling approaches with respect to space and time complexity and quality of image.

GIT-Shading: Shading and Advanced Rendering

KA Core:

1. Solutions and approximations to the rendering equation, for example

a. Distribution ray tracing and path tracing

b. Photon mapping

c. Bidirectional path tracing

d. Metropolis light transport

2. Time (motion blur), lens position (focus), and continuous frequency (color) and their impact on

rendering

3. Shadow mapping

4. Occlusion culling

5. Bidirectional Scattering Distribution function (BSDF) theory and microfacets

6. Subsurface scattering

7. Area light sources

8. Hierarchical depth buffering

9. Image-based rendering

10. Non-photorealistic rendering

11. Realtime rendering

12. GPU architecture (See also: AR-Heterogeneity)

13. Human visual systems including adaptation to light, sensitivity to noise, and flicker fusion (See also:

HCI-Accessibility, SEP-DEIA)

Illustrative Learning Outcomes:

KA Core:

1. Describe how an algorithm estimates a solution to the rendering equation.

2. Discuss the properties of a rendering algorithm (e.g., complete, consistent, and unbiased).

3. Analyze the bandwidth and computation demands of a simple shading algorithm.

4. Implement a non-trivial shading algorithm (e.g., toon shading, cascaded shadow maps) under a

rasterization API.

98

5. State how a particular artistic technique might be implemented in a renderer.

6. Describe how one might recognize the shading techniques used to create a particular image.

7. Write a program that implements any of the specified graphics techniques using a primitive graphics

system at the individual pixel level.

8. Write a ray tracer for scenes using a simple (e.g., Phong’s) Bidirectional Reflection Distribution

Function (BRDF) plus reflection and refraction.

GIT-Animation: Computer Animation

KA Core:

1. Principles of Animation: Squash and Stretch, Timing, Anticipation, Staging, Follow Through and

Overlapping Action, Straight Ahead Action, and Pose-to-Pose Action, Slow In and Out, Arcs,

Exaggeration, and Appeal

2. Types of animation

a. 2- and 3-dimensional animation

b. Motion graphics

c. Motion capture

d. Motion graphics

e. Stop animation

3. Key-frame animation

a. Keyframe Interpolation Methods: Lerp/Slerp/Spline

4. Forward and inverse kinematics (See also: SPD-Robot, AI-Robotics)

5. Skinning algorithms

a. Capturing

b. Linear blend, dual quaternion

c. Rigging

d. Blend shapes

e. Pose space deformation

6. Motion capture

a. Set up and fundamentals

b. Blending motion capture clips

c. Blending motion capture and keyframe animation

d. Ethical considerations (See also: SEP-DEIA, SEP-Privacy)

i. Avoidance of “default” captures - there is no typical human walk cycle.

ii. Accessibility

Illustrative Learning Outcomes:

KA Core:

1. Using a simple open-source character model and rig, describe visually why each of the principles of

animation is fundamental to realistic animation.

2. Compute the location and orientation of model parts using a forward kinematic approach.

3. Compute the orientation of articulated parts of a model from a location and orientation using an

inverse kinematic approach.

4. Compare the tradeoffs in different representations of rotations.

99

5. Write a script that implements the spline interpolation method for producing in-between positions

and orientations.

6. Deploy off-the-shelf animation software to construct, rig, and animate simple organic forms.

GIT-Simulation: Simulation

KA Core:

1. Collision detection and response

a. Signed Distance Fields

b. Sphere/sphere

c. Triangle/point

d. Edge/edge

2. Procedural animation using noise

3. Particle systems

a. Integration methods (e.g., forward Euler, midpoint, leapfrog)

b. Mass/spring networks

c. Position-based dynamics

d. Rules (e.g., boids, crowds)

e. Rigid bodies

4. Grid-based fluids

a. Semi-Lagrangian advection

b. Pressure projection

5. Heightfields

a. Terrain: transport, erosion

b. Water: ripple, shallow water.

6. Rule-based systems (e.g., L-systems, space-colonizing systems, Game of Life)

Illustrative Learning Outcomes:

KA Core:

1. Implement algorithms for physical modeling of particle dynamics using simple Newtonian

mechanics (e.g., Witkin & Kass, snakes and worms, symplectic Euler, Stormer/Verlet, or midpoint

Euler methods)

2. Contrast the basic ideas behind fluid simulation methods for modeling ballistic trajectories (e.g., for

splashes, dust, fire, or smoke).

3. Implement a smoke solver with user interaction.

GIT-Immersion: Immersion

KA Core: (See also: SPD-Game, SPD-Mobile, HCI-Design)

1. Immersion levels (i.e., Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR))

2. Definitions of and distinctions between immersion and presence

3. 360 Video

4. Stereoscopic display

a. Head-mounted displays

b. Stereo glasses

100

5. Viewer tracking

a. Inside out and outside In

b. Head/Body/Hand/tracking

6. Time-critical rendering to achieve optimal Motion To Photon (MTP) latency

a. Multiple Levels Of Details (LOD)

b. Image-based VR

c. Branching movies

7. Distributed VR, collaboration over computer network

8. Presence and factors that impact level of immersion

9. 3D interaction

10. Applications in medicine, simulation, training, and visualization

11. Safety in immersive applications

a. Motion sickness

b. VR obscures the real world, which increases the potential for falls and physical accidents

Illustrative Learning Outcomes:

KA Core:

1. Create a stereoscopic image.

2. Design and write an AR or VR application.

3. Summarize the pros and cons of different types of viewer tracking.

4. Compare and contrast the differences between geometry- and image-based virtual reality.

5. Analyze the design issues of user action synchronization and data consistency in a networked

environment.

6. Create the specifications for an augmented reality application to be used by surgeons in the

operating room.

7. Assess an immersive application’s accessibility (See also: HCI-Accessibility, SEP-DEIA)

8. Identify the most important technical characteristics of a VR system/application that should be

controlled to avoid motion sickness and explain why.

GIT-Interaction: Interaction

KA Core:

1. Event Driven Programming (See also: FPL-Event-Driven)

a. Mouse or touch events

b. Keyboard events

c. Voice input

d. Sensors

e. Message passing communication

f. Network events

2. Graphical User Interface (Single Channel)

a. Window

b. Icons

c. Menus

d. Pointing Devices

3. Accessibility (See also: SEP-DEIA)

101

Non-core:

4. Gestural Interfaces (See also: SPD-Game)

a. Touch screen gestures

b. Hand and body gestures

5. Haptic Interfaces

a. External actuators

b. Gloves

c. Exoskeletons

6. Multimodal Interfaces

7. Head-worn Interfaces

a. Brain-computer interfaces, e.g., Electroencephalography (EEG) electrodes and Multi-Electrode

Arrays (MEAs)

b. Headsets with embedded eye tracking

c. AR glasses

8. Natural Language Interfaces (See also: AI-NLP)

Illustrative Learning Outcomes:

KA Core:

1. Create a simple game that responds to single channel mouse and keyboard events.

2. Create a mobile app that responds to touch events.

3. Design and create an application that responds to different event triggers.

None-core:

4. Assess the consistency or lack of consistency in cross-platform touch screen gestures.

5. Design and create an application that provides haptic feedback.

6. Write a program that is controlled by gestures.

GIT-Image: Image Processing

KA Core: (See also: AI-Vision)

1. Morphological operations

a. Connected components

b. Dilation

c. Erosion

d. Computing region properties (area, perimeter, centroid, etc.)

2. Color histograms

a. Representation

b. Contrast enhancement through normalization

3. Image enhancement

a. Convolution

b. Blur (e.g., Gaussian)

c. Sharpen (e.g., Laplacian)

d. Frequency filtering (e.g., low-pass, high-pass)

4. Image restoration

102

a. Noise, degradation

b. Inpainting and other completion algorithms

c. Wiener filter

5. Image coding

a. Redundancy

b. Compression (e.g., Huffman coding)

c. Discrete Cosine Transform (DCT), wavelet transform, Fourier transforms (See also: SPD-

Interactive)

d. Nyquist Theorem

e. Watermarks

6. Connections to deep learning (e.g., Convolutional Neural Networks) (See also: AI-ML)

Illustrative Learning Outcomes:

KA Core:

1. Write a program that uses dilation and erosion to smooth the edges of a binary image.

2. Manipulating the hue of an image.

3. Write a program that applies a high-pass filter to an image. (The advanced variation would be to

filter an image using a high-pass filter in the frequency domain.)

4. Write a program that restores missing parts of an image using an in-paint algorithm (e.g., Poisson

image editing)

5. Assess the results of selectively filtering an image in the frequency domain.

GIT-Physical: Tangible/Physical Computing

KA Core:

1. Interaction with the physical world (See also: SPD-Embedded)

a. Acquisition of data from sensors

b. Driving external actuators

2. Connection to physical artifacts

a. Computer-Aided Design (CAD)

b. Computer-Aided Manufacturing (CAM)

c. Fabrication (See also: HCI-Design)

i. Prototyping

ii. Additive (3D printing)

iii. Subtractive (Computer Numerical Control (CNC) milling)

iv. Forming (vacuum forming)

3. Internet of Things (See also: SPD-Interactive)

a. Network connectivity

b. Wireless communication

Illustrative Learning Outcomes:

KA Core:

1. Construct a simple virtual switch or application button and use it to turn on an LED.

2. Construct a simple system to move a servo in response to sensor data.

103

3. Create a circuit and accompanying microcontroller code that uses a light sensor to vary a property

of something else (e.g., color or brightness of an LED or graphic, position of an external actuator).

4. Create a circuit with a variable resistor and write a microcontroller program that reads and responds

to the resistor’s changing values.

5. Create a 3D form in a CAD package.

a. Show how affine transformations are achieved in the CAD program.

b. Show an example of instances of an object.

c. Create a fabrication plan. Provide a cost estimate for materials and time. How will you fabricate

it?

d. Fabricate it. How closely did your actual fabrication process match your plan? Where did it

differ?

6. Write the G- and M-Code to construct a 3D maze and use a CAD/CAM package to check your

work.

7. Decide and defend your decision to use Ethernet, WiFi, Bluetooth, RFID/NFC, or something else for

internet connectivity when designing an IoT pill dispenser. Create an IoT pill dispenser.

8. Distinguish between the different types of fabrication and describe when you would use each.

GIT-SEP: Society, Ethics, and the Profession

KA Core:

1. Accessibility in immersive, interactive, and physical computing applications (See also: SEP-DEIA)

a. Accessible to people with mobility impairments

b. Accessible to people with vision and/or hearing impairments

2. Ethics/privacy in graphics applications. (See also: SEP-Privacy, SEP-Professional-Ethics, and

SEP-Security)

a. Acquisition of private data (room scans, body proportions, active cameras, etc.)

b. Can’t look away from immersive applications easily

c. Danger to self/surroundings while immersed

d. Ethical pitfalls of facial recognition

e. Misleading visualizations

i. Due to incorrect data because of exaggeration, hole filling, smoothing, data cleanup, etc.

ii. Even correct data can mislead (e.g., aliasing can cause back moving or stopped fan

blades)

f. Privacy regarding health and other personal information

g. Bias in image processing

i. Deep fakes

ii. Applications that misidentify people based on skin color or hairstyle

3. Intellectual Property law as it relates to computer graphics and interactive techniques (See also:

SEP-IP)

a. images used to train generative AI

b. images produced by generative AI

4. Current and past contributors to the field (See also: SEP-DEIA)

Illustrative Learning Outcomes:

KA Core:

104

1. Discuss the security issues inherent in location tags.

2. Describe the ethical pitfalls of facial recognition. Can facial recognition be used ethically? If so,

how?

3. Discuss the copyright issues of using watermarked images to train a neural network.

Professional Dispositions

● Self-directed: Graphics hardware and software evolves rapidly. Students need to understand the

importance of being a life-long learner.

● Collaborative: Graphics developers typically work in diverse teams composed of people with

disparate subject matter expertise. Students should understand the value of being a good team

member, and their teamwork skills should be cultivated and evaluated with constructive feedback.

● Effective communicator: Communication is critical. Students’ technical communication—verbal,

written, and in code—should be practiced and evaluated.

● Creative: Creative problem-solving lies at the core of computer graphics.

Mathematics Requirements

Required:

1. Coordinate geometry

2. Trigonometry

3. MSF-Linear*

a. Points (coordinate systems & homogeneous coordinates), vectors, and matrices

b. Vector operations: addition, scaling, dot and cross products

c. Matrix operations: addition, multiplication, determinants

d. Affine transformations

4. MSF-Calculus*

a. Continuity

*Note, if students enroll in a graphics class without linear algebra or calculus, graphics faculty can teach

what is needed. To wit, many graphics textbooks cover the requisite mathematics in the appendix.

Desirable:

1. MSF-Linear

a. Eigenvectors and Eigen decomposition

b. Gaussian elimination and lower upper factorization

c. Singular value decomposition

2. MSF-Calculus

a. Quaternions

b. Differentiation

c. Vector calculus

d. Tensors

e. Differential geometry

3. MSF-Probability

105

4. MSF-Statistics

5. MSF-Discrete

a. Numerical methods for simulation

Necessary and Desirable Data Structures:

1. Data Structures necessary for this knowledge area (See also: AL-Foundational, SDF-Algorithms,

SDF-Data-Structures)

a. Directed Acyclic Graphs

b. Tuples (points / vectors / matrices of fixed dimension)

c. Dense 1D, 2D, 3D arrays.

2. Data Structures desirable for this knowledge area (See also: AL-Foundational, SDF-Algorithms,

SDF-Data-Structures, SDF-Practices)

a. Array Structures and Structure of Arrays

b. Trees (e.g., K-trees, quadtrees, Huffman Trees)

Course Packaging Suggestions

Interactive Computer Graphics to include the following:

● GIT-Rendering (20 hours)

● GIT-Modeling (6 hours)

● GIT-Interaction (4 hours)

● SEP-Professional-Ethics, SEP-DEIA (3 hours)

Prerequisites:

● AL-Foundational

● AL-Strategies

● SDF-Algorithms

● SDF-Data-Structures

● SDF-Practices

● MSF-Linear as a prerequisite or cover relevant topics in class

Course objectives: Students should understand and be able to create basic computer graphics using

an API. They should know how to position and orient models, the camera, and distant and local lights.

Note: depending on the instructor, this course can be customized to include topics from another

graphics knowledge unit, for example a two-week unit on image processing or advanced rendering.

Media Computation to include the following:

● GIT-Fundamentals (4 hours)

● GIT-Rendering (6 hours)

● GIT-Interaction (3 hours)

● SDF-Fundamentals (10 hours)

● AL-Foundational (7 hours)

● HCI-User (5 hours)

● GIT-SEP (4 hours)

Course objectives: In this introductory programming class, students should be able to explain,

evaluate, and apply algorithms and arrays that use and produce digital media.

106

User-Centered Development to include the following:

● GIT-Fundamentals (4 hours)

● GIT-Rendering (6 hours)

● GIT-Interaction (3 hours)

● HCI-User (8 hours)

● HCI-Accessibility (3 hours)

● HCI-SEP (4 hours)

● SE-Construction (4 hours)

● SPD-Web, SPD-Game, SPD-Mobile (8 hours)

Students should be able to develop applications that are usable and useful for people.

Graphical user interface (GUI) designs will be implemented and analyzed using rapid

prototyping.

Tangible Computing to include the following:

● GIT-Physical (14 hours)

● GIT-Interaction (4 hours)

● SPD-Embedded (10 hours)

● HCI-User (3 hours)

● HCI-Design (3 hours)

● SEP-Privacy and SEP-DEIA (3 hours)

Prerequisites:

● AL-Foundational

Course objectives: Students should be able to use human-centered design to build circuits and

program a networked microcontroller. Additionally, they will learn to work with real time sensors and

understand polarity, Ohm’s law, and how to work with electronics safely.

Image Processing to include the following:

● GIT-Image (20 hours)

● GIT-Interaction (4 hours)

● SEP-Privacy, SEP-DEIA and SEP-IP (3 hours)

Prerequisites:

● AL-Foundational

● AL-Strategies

● SDF-Algorithms

● SDF-Data-Structures

● SDF-Practices

Course objectives: Students should understand and be able to appropriately acquire, process,

display, and save digital images.

Data Visualization to include the following:

● GIT-Visualization (20 hours)

● GIT-Interaction (4 hours)

● GIT-Fundamentals (4 hours)

107

● HCI-User (3 hours)

● HCI-Design (3 hours)

● SEP-Privacy, SEP-DEIA, and SEP-Professional-Ethics (3 hours)

Prerequisites:

● AL-Foundational

● AL-Strategies

● SDF-Algorithms

● SDF-Data-Structures

● SDF-Practices

● MSF-Probability

● MSF-Statistics

Course objectives: Students should understand how to select a dataset; ensure the data are accurate

and appropriate; design, develop and test a usable visualization program that depicts the data; and be

able to read and evaluate existing visualizations.

Simulation to include the following:

● GIT-Simulation (10 hours)

● GIT-Rendering (15 hours)

● GIT-Shading: (6 hours)

● SEP-Professional-Ethics (3 hours)

Prerequisites:

● AL-Foundational

● AL-Strategies

● SDF-Algorithms

● SDF-Data-Structures

● SDF-Practices

● MSF-Linear as a prerequisite or cover relevant topics in class

● MSF-Probability

Course objectives: Students should understand and be able to create directable simulations, both of

physical and non-physical systems.

Introduction to AR and VR to include the following:

● GIT-Immersive (15 hours)

● GIT-Fundamentals (4 hours)

● GIT-Interactive (8 hours)

● SEP-Privacy, SEP-DEIA, and SEP-Professional-Ethics (3 hours)

Course objectives: Students should understand and be able to develop VR and AR applications.

Computer Animation to include the following:

● GIT-Animation (30 hours)

● SEP-Privacy, SEP-DEIA, and SEP-Professional-Ethics (3 hours)

Prerequisites:

● Interactive Computer Graphics course

108

Course objectives: Students should understand and be able to create short animations employing the

principles of animation.

Lighting and Shading to include the following:

● GIT-Shading (12 hours)

● GIT-Modeling (6 hours)

● GIT-Interaction (4 hours)

● SEP-IP, SEP-DEIA, and SEP-Professional-Ethics (3 hours)

Prerequisites:

● Interactive Computer Graphics course

Course objectives: Students should be able to create realistic and non-photorealistic lighting and

understand the underlying theory of shading and lighting.

Committee

Chair: Susan Reiser, University of North Carolina Asheville, Asheville, NC, USA

Members:

● Erik Brunvand, University of Utah, Salt Lake City, UT, USA

● Kel Elkins, NASA/GSFC Scientific Visualization Studio, Greenbelt, MD, USA

● Jeff Lait, SideFX, Toronto, Canada

● Amruth Kumar, Ramapo College, Mahwah, NJ, USA

● Paul Mihail, Valdosta State University, Valdosta, GA, USA

● Tabitha Peck, Davidson College, Davidson, NC, USA

● Ken Schmidt, NOAA NCEI, Asheville, NC, USA

● Dave Shreiner, UnityTechnologies & Sonoma State University, San Francisco, CA, USA

Contributors:

● Ginger Alford, Southern Methodist University, University Park, TX, USA

● Christopher Andrews, Middlebury College, Middlebury, VT, USA

● A. J. Christensen, NASA/GSFC Scientific Visualization Studio – SSAI, Champaign, IL, USA

● Roger Eastman, University of Maryland, College Park, MD, USA

● Ted Kim, Yale University, New Haven, CT, USA

● Barbara Mones, University of Washington, Seattle, WA, USA

● Greg Shirah, NASA/GSFC Scientific Visualization Studio, Greenbelt, MD, USA

● Beatriz Sousa Santos, University of Aveiro, Portugal

● Anthony Steed, University College, London, UK

109

References

[1] Jon Quast, Clay Bruning, and Sanmeet Deo. "Markets: This Opportunity for Investors Is Bigger

Than Movies and Music Combined." https://www.nasdaq.com/articles/this-opportunity-for-

investors-is-bigger-than-movies-and-music-combined-2021-10-03. Accessed March 2024.

https://www.nasdaq.com/articles/this-opportunity-for-investors-is-bigger-than-movies-and-music-combined-2021-10-03.%20Accessed%20March%202024
https://www.nasdaq.com/articles/this-opportunity-for-investors-is-bigger-than-movies-and-music-combined-2021-10-03.%20Accessed%20March%202024

110

111

Human-Computer Interaction (HCI)

Preamble

Computational systems not only enable users to solve problems, but also foster social connectedness

and support a broad variety of human endeavors. Thus, these systems should work well with their

users and solve problems in ways that respect individual dignity, social justice, and human values and

creativity. Human-computer interaction (HCI) addresses those issues from an interdisciplinary

perspective that includes computer science, psychology, business strategy, and design principles.

Each user is different and, from the perspective of HCI, the design of every system that interacts with

people should anticipate and respect that diversity. This includes not only accessibility, but also cultural

and societal norms, neural diversity, modality, and the responses the system elicits in its users. An

effective computational system should evoke trust while it treats its users fairly, respects their privacy,

provides security, and abides by ethical principles.

These goals require design-centric engineering that begins with intention and with the understanding

that design is an iterative process, one that requires repeated evaluation of its usability and its impact

on its users. Moreover, technology evokes user responses, not only by its output, but also by the

modalities with which it senses and communicates. This knowledge area heightens the awareness of

these issues and should influence every computer scientist.

Changes since CS2013

Driven by this broadened perspective, the HCI knowledge area has revised the CS2013 document in

several ways:

● Knowledge units have been renamed and reformulated to reflect current practice and to anticipate

future technological development.

● There is increased emphasis on the nature of diversity and the centrality of design focused on the

user.

● Modality (e.g., text, speech) is still emphasized given its key role throughout HCI, but with a

reduced emphasis on specific modalities in favor of a more timely and empathetic approach.

● The curriculum reflects the importance of understanding and evaluating the impacts and

implications of a computational system on its users, including issues in ethics, fairness, trust, and

explainability.

● Given its extensive interconnections with other knowledge areas, we believe HCI is itself a cross-

cutting knowledge area with connections to Artificial Intelligence, Graphics and Interactive

Techniques, Software Development Fundamentals, Software Engineering, and Society, Ethics, and

the Profession.

112

Core Hours

Knowledge Units

HCI-User: Understanding the User: Individual goals and interactions with others

CS Core:

1. User-centered design and evaluation methods. (See also: SEP-Context, SEP-Ethical-Analysis,

SEP-Professional-Ethics)

a. “You are not the users”

b. User needs-finding

c. Formative studies

d. Interviews

e. Surveys

f. Usability tests

KA Core:

2. User-centered design methodology. (See also: SE-Tools)

a. Personas/persona spectrum

b. User stories/storytelling and techniques for gathering stories

c. Empathy maps

d. Needs assessment (techniques for uncovering needs and gathering requirements - e.g.,

interviews, surveys, ethnographic and contextual enquiry) (See also: SE-Requirements)

e. Journey maps

f. Evaluating the design (See also: HCI-Evaluation)

g. Interfacing with stakeholders, as a team

h. Risks associated with physical, distributed, hybrid and virtual teams

3. Physical and cognitive characteristics of the user

a. Physical capabilities that inform interaction design (e.g., color perception, ergonomics)

Knowledge Unit CS Core KA Core

Understanding the User 2 5

Accountability and Responsibility in Design 2 2

Accessibility and Inclusive Design 2 2

Evaluating the Design 1 2

System Design 1 5

Society, Ethics, and the Profession Included in SEP hours

Total Hours 8 16

113

b. Cognitive models that inform interaction design (e.g., attention, perception and recognition,

movement, memory)

c. Topics in social/behavioral psychology (e.g., cognitive biases, change blindness)

4. Designing for diverse user populations. (See also: SEP-DEIA, HCI-Accessibility)

a. How differences (e.g., in race, ability, age, gender, culture, experience, and education)

impact user experiences and needs

b. Internationalization

c. Designing for users from other cultures

d. Cross-cultural design

e. Challenges to effective design evaluation. (e.g., sampling, generalization; disability and

disabled experiences)

f. Universal design

5. Collaboration and communication (See also: AI-SEP, SE-Teamwork, SEP-Communication, SPD-

Game)

a. Understanding the user in a multi-user context

b. Synchronous group communication (e.g., chat rooms, conferencing, online games)

c. Asynchronous group communication (e.g., email, forums, social networks)

d. Social media, social computing, and social network analysis

e. Online collaboration

f. Social coordination and online communities

g. Avatars, characters, and virtual worlds

Non-core:

6. Multi-user systems

Illustrative Learning Outcomes:

CS Core:

1. Conduct a user-centered design process that is integrated into a project.

KA Core:

2. Compare and contrast the needs of users with those of designers.

3. Identify the representative users of a design and discuss who else could be impacted by it.

4. Describe empathy and evaluation as elements of the design process.

5. Carry out and document an analysis of users and their needs.

6. Construct a user story from a needs assessment.

7. Redesign an existing solution to a population whose needs differ from those of the initial target

population.

8. Contrast the different needs-finding methods for a given design problem.

9. Reflect on whether your design would benefit from low-tech or no-tech components.

Non-core:

10. Recognize the implications of designing for a multi-user system/context.

114

HCI-Accountability: Accountability and Responsibility in Design

CS Core: (See also: SEP-Context)

1. Design impact

a. Sustainability (See also: SEP-Sustainability)

b. Inclusivity (See also: SEP-DEIA)

c. Safety, security and privacy (See also: SEP-Security, SEC-Foundations)

d. Harm and disparate impact (See also: SEP-DEIA)

2. Ethics in design methods and solutions (See also: SEP-Ethical-Analysis, SEP-Context, SEP-

Intellectual Property)

a. The role of artificial intelligence (See also: AI-SEP)

b. Responsibilities for considering stakeholder impact and human factors (See also: SEP-

Professional-Ethics)

c. Role of design to meet user needs

3. Requirements in design (See also: SEP-Professional-Ethics)

a. Ownership responsibility

b. Legal frameworks, compliance requirements

c. Consideration beyond immediate user needs, including via iterative reconstruction of

problem analysis and “digital well-being” features

KA Core:

4. Value-sensitive design (See also: SEP-Ethical-Analysis, SEP-Context, SEP-Communication)

a. Identify direct and indirect stakeholders

b. Determine and include diverse stakeholder values and value systems.

5. Persuasion through design (See also: SEP-Communication)

a. Assess the persuasive content of a design

b. Employ persuasion as a design goal

c. Distinguish persuasive interfaces from manipulative interfaces

Illustrative Learning Outcomes:

CS Core:

1. Identify and critique the potential impacts of a design on society and relevant communities to

address such concerns as sustainability, inclusivity, safety, security, privacy, harm, and disparate

impact.

KA Core:

2. Identify the potential human factor elements in a design.

3. Identify and understand direct and indirect stakeholders.

4. Develop scenarios that consider the entire lifespan of a design, beyond the immediately planned

uses that anticipate direct and indirect stakeholders.

5. Identify and critique the potential factors in a design that impact direct and indirect stakeholders and

broader society (e.g., transparency, sustainability of the system, trust, artificial intelligence).

6. Assess the persuasive content of a design and its intent relative to user interests.

7. Critique the outcomes of a design given its intent.

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.3whwml4
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.2bn6wsx
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.30j0zll
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl

115

8. Understand the impact of design decisions.

HCI-Accessibility: Accessibility and Inclusive Design

CS Core:

1. Background (See also: SEP-DEIA, SEP-Security)

a. Societal and legal support for and obligations to people with disabilities

b. Accessible design benefits everyone

2. Techniques

a. Accessibility standards (e.g., Web Content Accessibility Guidelines) (See also: SPD-Web)

3. Technologies (See also: SE-Tools)

a. Features and products that enable accessibility and support inclusive development by

designers and engineers

4. IDFs (Inclusive Design Frameworks) (See also: SEP-DEIA)

a. Recognizing differences

5. Universal design

KA Core:

6. Background

a. Demographics and populations (permanent, temporary, and situational disability)

b. International perspectives on disability (See also: SEP-DEIA)

c. Attitudes towards people with disabilities (See also: SEP-DEIA)

7. Techniques

a. UX (user experience) design and research

b. Software engineering practices that enable inclusion and accessibility. (See also: SEP-DEIA)

8. Technologies

a. Examples of accessibility-enabling features, such as conformance to screen readers

9. Inclusive Design Frameworks

a. Creating inclusive processes such as participatory design

b. Designing for larger impact

Non-core:

10. Background (See also: SEP-DEIA)

a. Unlearning and questioning

b. Disability studies

11. Technologies: the Return On Investment (ROI) of inclusion

12. Inclusive Design Frameworks: user-sensitive inclusive design (See also: SEP-DEIA)

13. Critical approaches to HCI (e.g., inclusivity) (See also: SEP-DEIA)

Illustrative Learning Outcomes:

CS Core:

1. Identify accessibility challenges faced by people with different disabilities and specify the associated

accessible and assistive technologies that address them. (See also: AI-Agents, AI-Robotics)

2. Identify appropriate inclusive design approaches, such as universal design and ability-based

design.

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.2bn6wsx
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.gw3ngmojtgv5
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl

116

3. Identify and demonstrate understanding of software accessibility guidelines.

4. Demonstrate recognition of laws and regulations applicable to accessible design.

KA Core:

5. Apply inclusive frameworks to design, such as universal design and usability and ability-based

design, and demonstrate accessible design of visual, voice-based, and touch-based UIs.

6. Demonstrate understanding of laws and regulations applicable to accessible design.

7. Demonstrate understanding of what is appropriate and inappropriate high level of skill during

interaction with individuals from diverse populations.

8. Analyze web pages and mobile apps for current standards of accessibility.

Non-core:

9. Biases towards disability, race, and gender have historically, either intentionally or unintentionally,

informed technology design.

a. Find examples.

b. Consider how those experiences (learnings?) might inform design.

10. Conceptualize user experience research to identify user needs and generate design insights.

HCI-Evaluation: Evaluating the Design

CS Core:

1. Methods for evaluation with users

a. Formative (e.g., needs-finding, exploratory analysis) and summative assessment (e.g.,

functionality and usability testing)

b. Elements to evaluate (e.g., utility, efficiency, learnability, user satisfaction, affective elements

such as pleasure and engagement)

c. Understanding ethical approval requirements before engaging in user research (See also: SE-

Tools, SEP-Ethical-Analysis, SEP-Security, SEP-Privacy, SEP-Professional-Ethics)

KA Core:

2. Methods for evaluation with users (See also: SE-Validation)

a. Qualitative methods (qualitative coding and thematic analysis)

b. Quantitative methods (statistical tests)

c. Mixed methods (e.g., observation, think-aloud, interview, survey, experiment)

d. Presentation requirements (e.g., reports, personas)

e. User-centered testing

f. Heuristic evaluation

g. Challenges and shortcomings to effective evaluation (e.g., sampling, generalization)

3. Study planning

a. How to set study goals

b. Hypothesis design

c. Approvals from Institutional Research Boards and ethics committees (See also: SEP-Ethical-

Analysis, SEP-Security, SEP-Privacy)

d. How to pre-register a study

e. Within-subjects vs between-subjects design

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.2bn6wsx
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.1y810tw
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.2p2csry
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.2bn6wsx
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.1y810tw

117

4. Implications and impacts of design with respect to the environment, material, society, security,

privacy, ethics, and broader impacts. (See also: SEC-Foundations)

a. The environment

b. Material

c. Society

d. Security

e. Privacy

f. Ethics

g. Broader impacts

Non-core:

5. Techniques and tools for quantitative analysis

a. Statistical packages

b. Visualization tools

c. Statistical tests (e.g., ANOVA, t-tests, post-hoc analysis, parametric vs non-parametric tests)

d. Data exploration and visual analytics; how to calculate effect size.

6. Data management

a. Data storage and data sharing (open science)

b. Sensitivity and identifiability.

Illustrative Learning Outcomes:

CS Core:

1. Discuss the differences between formative and summative assessment and their role in evaluating

design

KA Core:

2. Select appropriate formative or summative evaluation methods at different points throughout the

development of a design.

3. Discuss the benefits of using both qualitative and quantitative methods for evaluation.

4. Evaluate the implications and broader impacts of a given design.

5. Plan a usability evaluation for a given user interface, and justify its study goals, hypothesis design,

and study design.

6. Conduct a usability evaluation of a given user interface and draw defensible conclusions given the

study design.

Non-core:

7. Select and run appropriate statistical tests on provided study data to test for significance in the

results.

8. Pre-register a study design, with planned statistical tests.

HCI-Design: System Design

CS Core:

1. Prototyping techniques and tools

a. Low-fidelity prototyping

118

b. Rapid prototyping

c. Throw-away prototyping

d. Granularity of prototyping

2. Design patterns

a. Iterative design

b. Universal design (See also: SEP-DEIA)

c. Interaction design (e.g., data-driven design, event-driven design)

3. Design constraints

a. Platforms (See also: SPD-Game)

b. Devices

c. Resources

d. Balance among usability, security and privacy (See also: SEC-Foundations)

KA Core:

4. Design patterns and guidelines

a. Software architecture patterns

b. Cross-platform design

c. Synchronization considerations

5. Design processes (See also: SEP-Communication)

a. Participatory design

b. Co-design

c. Double-diamond

d. Convergence and divergence

6. Interaction techniques (See also: GIT-Interaction)

a. Input and output vectors (e.g., gesture, pose, touch, voice, force)

b. Graphical user interfaces

c. Controllers

d. Haptics

e. Hardware design

f. Error handling

7. Visual UI design (See also: GIT-Visualization)

a. Color

b. Layout

c. Gestalt principles

Non-core:

8. Immersive environments (See also: GIT-Immersion)

a. XR (encompasses virtual reality, augmented reality, and mixed reality)

b. Spatial audio

9. 3D printing and fabrication

10. Asynchronous interaction models

11. Creativity support tools

12. Voice UI designs

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.30j0zll

119

Illustrative Learning Outcomes:

CS Core:

1. Propose system designs tailored to a specified appropriate mode of interaction.

2. Follow an iterative design and development process that incorporates the following:

a. Understanding the user

b. Developing an increment

c. Evaluating the increment

d. Feeding those results into a subsequent iteration

3. Explain the impact of changing constraints and design tradeoffs (e.g., hardware, user, security.) on

system design.

KA Core:

4. Evaluate architectural design approaches in the context of project goals.

5. Identify synchronization challenges as part of the user experience in distributed environments.

6. Evaluate and compare the privacy implications behind different input techniques for a given

scenario.

7. Explain the rationale behind a UI design based on visual design principles.

Non-core:

8. Evaluate the privacy implications within a VR/AR/MR scenario

HCI-SEP: Society, Ethics, and the Profession

CS Core:

1. Universal and user-centered design (See also: HCI-User, SEP-DEIA)

2. Accountability (See also: HCI-Accountability)

3. Accessibility and inclusive design (See also: SEP-DEIA, SEP-Security)

4. Evaluating the design (See also: HCI-Evaluation)

5. System design (See also: HCI-Design)

KA Core:

6. Participatory and inclusive design processes

7. Evaluating the design: Implications and impacts of design: with respect to the environment,

material, society, security, privacy, ethics, and broader impacts (See also: SEC-Foundations, SEP-

Privacy)

Non-core:

8. VR/AR/MR scenarios

Illustrative Learning Outcomes:

CS Core:

1. Conduct a user-centered design process that is integrated into a project.

2. Identify and critique the potential impacts of a design on society and relevant communities to

address such concerns as sustainability, inclusivity, safety, security, privacy, harm, and disparate

impact.

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl
https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.x2dau3v8japl

120

KA Core:

2. Critique a recent example of a non-inclusive design choice, its societal implications, and propose

potential design improvements.

3. Evaluating the design: Identify the implications and broader impacts of a given design.

Non-core:

4. Evaluate the privacy implications within a VR/AR/MR scenario.

Professional Dispositions

● Adaptable: An HCI practitioner should be adaptable to address dynamic changes in technology,

user needs, and design challenges.

● Meticulous: An HCI practitioner should be meticulous in ensuring that their products are both user-

friendly and meet the objectives of the project.

● Empathetic: An HCI practitioner must demonstrate understanding of the user’s needs.

● Team-oriented: The successful HCI practitioner should focus on the success of the team.

● Inventive: An HCI practitioner should design solutions that are informed by past practice, the needs

of the audience, and HCI fundamentals. Creativity is required to blend these into something that

solves the problem appropriately and elegantly.

Mathematics Requirements

Required:

● Basic statistics (MSF-Statistics) to support the evaluation and interpretation of results, including

central tendency, variability, frequency distribution.

Course Packaging Suggestions

Introduction to HCI for CS majors and minors, to include the following:

● HCI-User: Understanding the User (7 hours)

● HCI-Accountability: Accountability and Responsibility in Design: (2 hours)

● HCI-Accessibility: Accessibility and Inclusive Design: (4 hours)

● HCI-Evaluation: Evaluating the Design: (3 hours)

● HCI-Design: System Design: (10 hours)

● HCI-SEP: Society, Ethics, and the Profession: (2 hours)

Prerequisites:

● CS2

Course objectives: A student who completes this course should be able to describe user-centered

design principles and apply them in the context of a small project.

Introduction to Data Visualization to include the following:

● GIT-Visualization (30 hours)

121

● GIT-Rendering (10 hours)

● HCI-User: Understanding the User (3 hours)

● SEP-Privacy, SEP-Ethical-Analysis (4 hours)

Prerequisites:

● CS2

● MSF-Linear

Course objectives: Students should understand how to select a dataset; ensure the data are accurate

and appropriate; and design, develop and test a visualization program that depicts the data and is

usable.

 Advanced Course: Usability Testing

● HCI-User (5 hours)

● HCI-Accountability (3 hours)

● HCI-Accessibility (4 hours)

● HCI-Evaluation (20 hours)

● HCI-Design (3 hours)

● HCI-SEP (5 hours)

 Prerequisites:

● Introductory/Foundation courses in HCI

● Research methods, MSF-Statistics

Course objectives: Students should be able to formally evaluate products including the design and

execution of usability test tasks, recruitment of appropriate users, design of test tasks, design of the test

environment, test plan development and implementation, analysis and interpretation of the results, and

documentation and presentation of results and recommendations. Students should be able to select

appropriate techniques, procedures, and protocols to apply in various situations for usability testing with

users. Students should also be able to design an appropriate evaluation plan, effectively conduct the

usability test, collect data, and analyze results so that they can suggest improvements.

Committee

Chair: Susan L. Epstein, Hunter College and The Graduate Center of The City University of New York,

NY, USA

Members:

● Sherif Aly, The American University of Cairo, Cairo, Egypt

● Jeremiah Blanchard, University of Florida, Gainesville, FL, USA

● Zoya Bylinskii, Adobe Research, Cambridge, MA, USA

● Paul Gestwicki, Ball State University, Muncie, IN, USA

● Susan Reiser, University of North Carolina at Asheville, Asheville, NC, USA

● Amanda M. Holland-Minkley, Washington and Jefferson College, Washington, PA, USA

● Ajit Narayanan, Google, Chennai, India

● Nathalie Riche, Microsoft, Redmond, WA, USA

● Kristen Shinohara, Rochester Institute of Technology, Rochester, NY, USA

● Olivier St-Cyr, University of Toronto, Toronto, Canada

122

123

Mathematical and Statistical Foundations (MSF)

Preamble

A strong mathematical foundation remains a bedrock of computer science education and infuses the

practice of computing whether in developing algorithms, designing systems, modeling real-world

phenomena, or computing with data. This Mathematical and Statistical Foundations (MSF) knowledge

area – the successor to the ACM CS2013 [1] curriculum's "Discrete Structures" area – seeks to identify

the mathematical and statistical material that undergirds modern computer science. The change of

name corresponds to a realization both that the broader name better describes the combination of

topics from the 2013 report and from those required for the recently growing areas of computer science,

such as artificial intelligence, machine learning, data science, and quantum computing, many of which

have continuous mathematics as their foundations.

The committee sought the following inputs to prepare their recommendations:

● A survey about mathematical preparation distributed to computer science faculty (nearly 600

respondents) across a variety of institutional types and in various countries;

● Math-related curricular views amongst data collected from ACM’s survey of industry

professionals (865 respondents);

● Mathematics requirements stated by all the knowledge areas in the report;

● Direct input from the computer science theory community; and

● Review of past curricular reports including recent ones on data science (e.g., Park City report

[2]) and quantum computing education.

Changes since CS2013

The breadth of mathematics needed to address the mathematical needs of rapidly growing areas such

as artificial intelligence, machine learning, robotics, data science, and quantum computing has grown

beyond discrete structures. These areas call for a renewed focus on probability, statistics, and linear

algebra, as supported by the faculty survey that asked respondents to rate various mathematical areas

in their importance for both an industry career as well as for graduate school: the combined such

ratings for probability, statistics, and linear algebra, for example, were 98%, 98% and 89% respectively,

reflecting a strong consensus in the computer science academic community.

Core Hours

Acknowledging some tensions

Several challenges face computer science (CS) programs when weighing mathematics requirements:

(1) many CS majors, perhaps aiming for a software career, are unenthusiastic about investing in

mathematics; (2) institutions such as liberal-arts colleges often limit how many courses a major may

require, while others may require common engineering courses that fill up the schedule; and (3) some

programs adopt a more pre-professional curricular outlook while others emphasize a more foundational

one. Thus, we are hesitant to recommend an all-encompassing set of mathematical topics that “every

124

CS degree must require.” Instead, we outline two sets of core requirements, a CS Core set suited to

hours-limited majors and a more expansive set of CS Core plus KA Core to align with technically

focused programs. The principle here is that considering the additional foundational mathematics

needed for AI, data science, and quantum computing, programs ought to consider as much as possible

from the more expansive CS+KA version unless there are sound institutional reasons for alternative

requirements.

Note: the hours in a row (example: linear algebra) add up to 40 (= 5 + 35), reflecting a standard course;

shorter combined courses may be created, for example, by including probability in discrete

mathematics (29 hours of discrete mathematics, 11 hours of probability).

Knowledge Unit CS Core KA Core

Discrete Mathematics 29 11

Probability 11 29

Statistics 10 30

Linear Algebra 5 35

Calculus 0 40

Total 55 145

Rationale for recommended hours

CS Core: While some discrete mathematics courses include probability, we highlight its importance

with a minimum number of hours (11) to reflect the strong consensus in the academic community

based on the survey. Taken together, the total CS Core across discrete mathematics and probability

(40 hours) is typical of a one-term course. Fifteen hours are allotted to statistics and linear algebra for

basic definitions so that, for example, students should at least be familiar with terms like mean,

standard deviation, and vector. These could be covered in regular computer science courses. Many

programs typically include a broader statistics requirement.

KA Core: The KA Core hours can be read as the remaining hours available to flesh out each topic into

a standard 40-hour course. Note that the calculus hours roughly correspond to the typical Calculus-I

course now standard across the world. Based on our survey, most programs already require Calculus-I.

However, we have left out Calculus-II (an additional 40 hours) and left it to programs to decide whether

Calculus-II should be added to program requirements. Programs could choose to require a more

rigorous calculus-based probability or statistics sequence, or non-calculus-based versions. Similarly,

linear algebra can be taught as an applied course without a calculus prerequisite or as a more

advanced course.

125

Knowledge Units

MSF-Discrete: Discrete Mathematics

CS Core:

1. Sets, relations, functions, cardinality

2. Recursive mathematical definitions

3. Proof techniques (induction, proof by contradiction)

4. Permutations, combinations, counting, pigeonhole principle

5. Modular arithmetic

6. Logic: truth tables, connectives (operators), inference rules, formulas, normal forms, simple

predicate logic

7. Graphs: basic definitions

8. Order notation

Illustrative Learning Outcomes:

CS Core:

1. Sets, Relations, and Functions, Cardinality

a. Explain with examples the basic terminology of functions, relations, and sets.

b. Perform the operations associated with sets, functions, and relations.

c. Relate practical examples to the appropriate set, function, or relation model, and interpret the

associated operations and terminology in context.

d. Calculate the size of a finite set, including making use of the sum and product rules and

inclusion-exclusion principle.

e. Explain the difference between finite, countable, and uncountable sets.

2. Recursive mathematical definitions

a. Apply recursive definitions of sequences or structures (e.g., Fibonacci numbers, linked lists,

parse trees, fractals).

b. Formulate inductive proofs of statements about recursive definitions.

c. Solve a variety of basic recurrence relations.

d. Analyze a problem to determine underlying recurrence relations.

e. Given a recursive/iterative code snippet, describe its underlying recurrence relation, hypothesize

a closed form for the recurrence relation, and prove the hypothesis correct (usually, using

induction).

3. Proof Techniques

a. Identify the proof technique used in a given proof.

b. Outline the basic structure of each proof technique (direct proof, proof by contradiction, and

induction) described in this unit.

c. Apply each of the proof techniques (direct proof, proof by contradiction, and induction) correctly

in the construction of a sound argument.

d. Determine which type of proof is best for a given problem.

e. Explain the parallels between ideas of mathematical and/or structural induction to recursion and

recursively defined structures.

126

f. Explain the relationship between weak and strong induction and give examples of the

appropriate use of each.

4. Permutations, combinations, and counting

a. Apply counting arguments, including sum and product rules, inclusion-exclusion principle, and

arithmetic/geometric progressions.

b. Apply the pigeonhole principle in the context of a formal proof.

c. Compute permutations and combinations of a set, and interpret the meaning in the context of

the specific application.

d. Map real-world applications to appropriate counting formalisms, such as determining the

number of ways to arrange people around a table, subject to constraints on the seating

arrangement, or the number of ways to determine certain hands in cards (e.g., a full house).

5. Modular arithmetic

a. Perform computations involving modular arithmetic.

b. Explain the notion of the greatest common divisor and apply Euclid's algorithm to compute it.

6. Logic

a. Convert logical statements from informal language to propositional and predicate logic

expressions.

b. Apply formal methods of symbolic propositional and predicate logic, such as calculating validity

of formulae, computing normal forms, or negating a logical statement.

c. Use the rules of inference to construct proofs in propositional and predicate logic.

d. Describe how symbolic logic can be used to model real-life situations or applications, including

those arising in computing contexts such as software analysis (e.g., program correctness),

database queries, and algorithms.

e. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such

as predicting the behavior of software or solving problems such as puzzles.

f. Describe the strengths and limitations of propositional and predicate logic.

g. Explain what it means for a proof in propositional (or predicate) logic to be valid.

7. Graphs

a. Illustrate by example the basic terminology of graph theory, and some of the properties and

special cases of types of graphs, including trees.

b. Demonstrate different traversal methods for trees and graphs, including pre-, post-, and in-order

traversal of trees, along with breadth-first and depth-first search for graphs.

c. Model a variety of real-world problems in computer science using appropriate forms of graphs

and trees, such as representing a network topology, the organization of a hierarchical file

system, or a social network.

d. Show how concepts from graphs and trees appear in data structures, algorithms, proof

techniques (structural induction), and counting.

KA Core:

The recommended topics are the same between CS core and KA-core, but with far more hours, the

KA-core can cover these topics in depth and might include more computing-related applications.

MSF-Probability: Probability

CS Core:

127

1. Basic notions: sample spaces, events, probability, conditional probability, Bayes’ rule

2. Discrete random variables and distributions

3. Continuous random variables and distributions

4. Expectation, variance, law of large numbers, central limit theorem

5. Conditional distributions and expectation

6. Applications to computing, the difference between probability and statistics (as subjects)

KA Core:

The recommended topics are the same between CS core and KA-core, but with far more hours, the

KA-core can cover these topics in depth and might include more computing-related applications.

Illustrative Learning Outcomes:

CS Core:

1. Basic notions: sample spaces, events, probability, conditional probability, Bayes’ rule

a. Translate a prose description of a probabilistic process into a formal setting of sample spaces,

outcome probabilities, and events.

b. Calculate the probability of simple events.

c. Determine whether two events are independent.

d. Compute conditional probabilities, including through applying (and explaining) Bayes' Rule.

2. Discrete random variables and distributions

a. Define the concept of a random variable and indicator random variable.

b. Determine whether two random variables are independent.

c. Identify common discrete distributions (e.g., uniform, Bernoulli, binomial, geometric).

3. Continuous random variables and distributions

a. Identify common continuous distributions (e.g., uniform, normal, exponential).

b. Calculate probabilities using cumulative density functions.

4. Expectation, variance, law of large numbers, central limit theorem

a. Define the concept of expectation and variance of a random variable.

b. Compute the expected value and variance of simple or common discrete/continuous random

variables.

c. Explain the relevance of the law of large numbers and central limit theorem to probability

calculations.

5. Conditional distributions and expectation

a. Explain the distinction between joint, marginal, and conditional distributions.

b. Compute marginal and conditional distributions from a full distribution, for both discrete and

continuous random variables.

c. Compute conditional expectations for both discrete and continuous random variables.

6. Applications to computing

a. Describe how probability can be used to model real-life situations or applications, such as

predictive text, hash tables, and quantum computation.

b. Apply probabilistic processes to solving computational problems, such as through randomized

algorithms or in security contexts.

128

MSF-Statistics: Statistics

CS Core:

1. Basic definitions and concepts: populations, samples, measures of central tendency, variance

2. Univariate data: point estimation, confidence intervals

KA Core:

3. Multivariate data: estimation, correlation, regression

4. Data transformation: dimension reduction, smoothing

5. Statistical models and algorithms

6. Hypothesis testing

Illustrative Learning Outcomes:

CS Core:

1. Basic definitions and concepts: populations, samples, measures of central tendency, variance

a. Create and interpret frequency tables.

b. Display data graphically and interpret graphs (e.g., histograms).

c. Recognize, describe, and calculate means, medians, quantiles (location of data).

d. Recognize, describe, and calculate variances, interquartile ranges (spread of data).

2. Univariate data: point estimation, confidence intervals

a. Formulate maximum likelihood estimation (in linear-Gaussian settings) as a least-squares

problem.

b. Calculate maximum likelihood estimates.

c. Calculate maximum a posteriori estimates and make a connection with regularized least

squares.

d. Compute confidence intervals as a measure of uncertainty.

KA Core:

3. Sampling, bias, adequacy of samples, Bayesian vs frequentist interpretations

4. Multivariate data: estimation, correlation, regression

a. Formulate the multivariate maximum likelihood estimation problem as a least-squares problem.

b. Interpret the geometric properties of maximum likelihood estimates.

c. Derive and calculate the maximum likelihood solution for linear regression.

d. Derive and calculate the maximum a posteriori estimates for linear regression.

e. Implement both maximum likelihood and maximum a posteriori estimates in the context of a

polynomial regression problem.

f. Formulate and understand the concept of data correlation (e.g., in 2D)

5. Data transformation: dimension reduction, smoothing

a. Formulate and derive Principal Component Analysis (PCA) as a least-squares problem.

b. Geometrically interpret PCA (when solved as a least-squares problem).

c. Describe when PCA works well (one can relate back to correlated data).

d. Geometrically interpret the linear regression solution (maximum likelihood).

6. Statistical models and algorithms

a. Apply PCA to dimensionality reduction problems.

b. Describe the tradeoff between compression and reconstruction power.

129

c. Apply linear regression to curve-fitting problems.

d. Explain the concept of overfitting.

e. Discuss and apply cross-validation in the context of overfitting and model selection (e.g., degree

of polynomials in a regression context).

MSF-Linear: Linear Algebra

CS Core:

1. Vectors: definitions, vector operations, geometric interpretation, angles: Matrices: definition, matrix

operations, meaning of Ax=b.

KA Core:

2. Matrices, matrix-vector equation, geometric interpretation, geometric transformations with matrices

3. Solving equations, row-reduction

4. Linear independence, span, basis

5. Orthogonality, projection, least-squares, orthogonal bases

6. Linear combinations of polynomials, Bezier curves

7. Eigenvectors and eigenvalues

8. Applications to computer science: Principal Components Analysis (PCA), Singular Value

Decomposition (SVD), page-rank, graphics

Illustrative Learning Outcomes:

CS Core:

1. Vectors: definitions, vector operations, geometric interpretation, angles

a. Describe algebraic and geometric representations of vectors in Rn and their operations,

including addition, scalar multiplication, and dot product.

b. List properties of vectors in Rn.

c. Compute angles between vectors in Rn.

KA Core:

2. Matrices, matrix-vector equation, geometric interpretation, geometric transformations with matrices

a. Perform common matrix operations, such as addition, scalar multiplication, multiplication, and

transposition.

b. Relate a matrix to a homogeneous system of linear equations.

c. Recognize when two matrices can be multiplied.

d. Relate various matrix transformations to geometric illustrations.

3. Solving equations, row-reduction

a. Formulate, solve, apply, and interpret properties of linear systems.

b. Perform row operations on a matrix.

c. Relate an augmented matrix to a system of linear equations.

d. Solve linear systems of equations using the language of matrices.

e. Translate word problems into linear equations.

f. Perform Gaussian elimination.

4. Linear independence, span, basis

a. Define subspace of a vector space.

130

b. List examples of subspaces of a vector space.

c. Recognize and use basic properties of subspaces and vector spaces.

d. Determine if specific subsets of a vector space are subspaces.

e. Discuss the existence of a basis of an abstract vector space.

f. Describe coordinates of a vector relative to a given basis.

g. Determine a basis for and the dimension of a finite-dimensional space.

h. Discuss spanning sets for vectors in Rn.

i. Discuss linear independence for vectors in Rn.

j. Define the dimension of a vector space.

5. Orthogonality, projection, least-squares, orthogonal bases

a. Explain the Gram-Schmidt orthogonalization process.

b. Define orthogonal projections.

c. Define orthogonal complements.

d. Compute the orthogonal projection of a vector onto a subspace, given a basis for the subspace.

e. Explain how orthogonal projections relate to least square approximations.

6. Linear combinations of polynomials, Bezier curves

a. Identify polynomials as generalized vectors.

b. Explain linear combinations of basic polynomials.

c. Describe orthogonality for polynomials.

d. Distinguish between basic polynomials and Bernstein polynomials.

e. Apply Bernstein polynomials to Bezier curves.

7. Eigenvectors and eigenvalues

a. Find the eigenvalues and eigenvectors of a matrix.

b. Define eigenvalues and eigenvectors geometrically.

c. Use characteristic polynomials to compute eigenvalues and eigenvectors.

d. Use eigenspaces of matrices, when possible, to diagonalize a matrix.

e. Perform diagonalization of matrices.

f. Explain the significance of eigenvectors and eigenvalues.

g. Find the characteristic polynomial of a matrix.

h. Use eigenvectors to represent a linear transformation with respect to a particularly nice basis.

8. Applications to computer science: PCA, SVD, page-rank, graphics

a. Explain the geometric properties of PCA.

b. Relate PCA to dimensionality reduction.

c. Relate PCA to solving least-squares problems.

d. Relate PCA to solving eigenvector problems.

e. Apply PCA to reducing the dimensionality of a high-dimensional dataset (e.g., images).

f. Explain the page-rank algorithm and understand how it relates to eigenvector problems.

g. Explain the geometric differences between SVD and PCA.

h. Apply SVD to a concrete example (e.g., movie rankings).

MSF-Calculus

KA Core:

1. Sequences, series, limits

131

2. Single-variable derivatives: definition, computation rules (chain rule etc.), derivatives of important

functions, applications

3. Single-variable integration: definition, computation rules, integrals of important functions,

fundamental theorem of calculus, definite vs indefinite, applications (including in probability)

4. Parametric and polar representations

5. Taylor series

6. Multivariate calculus: partial derivatives, gradient, chain-rule, vector valued functions,

7. Optimization: convexity, global vs local minima, gradient descent, constrained optimization, and

Lagrange multipliers.

8. Ordinary Differential Equations (ODEs): definition, Euler method, applications to simulation, Monte

Carlo integration

9. CS applications: gradient descent for machine learning, forward and inverse kinematics,

applications of calculus to probability

Note: the calculus topics listed above are aligned with computer science goals rather than with

traditional calculus courses. For example, multivariate calculus is often a course by itself, but computer

science undergraduates only need parts of it for machine learning.

Illustrative Learning Outcomes:

KA Core:

1. Sequences, series, limits

a. Explain the difference between infinite sets and sequences.

b. Explain the formal definition of a limit.

c. Derive the limit for examples of sequences and series.

d. Explain convergence and divergence.

e. Apply L’Hospital’s rule and other approaches to resolving limits.

2. Single-variable derivatives: definition, computation rules (chain rule etc.), derivatives of important

functions, applications

a. Explain a derivative in terms of limits.

b. Explain derivatives as functions.

c. Perform elementary derivative calculations from limits.

d. Apply sum, product, and quotient rules.

e. Work through examples with important functions.

3. Single-variable integration: definition, computation rules, integrals of important functions,

fundamental theorem of calculus, definite vs indefinite, applications (including in probability)

a. Explain the definitions of definite and indefinite integrals.

b. Apply integration rules to examples with important functions.

c. Explore the use of the fundamental theorem of calculus.

d. Apply integration to problems.

4. Parametric and polar representations

a. Apply parametric representations of important curves.

b. Apply polar representations.

5. Taylor series

a. Derive Taylor series for some important functions.

b. Apply the Taylor series to approximations.

132

6. Multivariate calculus: partial derivatives, gradient, chain-rule, vector valued functions, applications

to optimization, convexity, global vs local minima.

a. Compute partial derivatives and gradients.

b. Work through examples with vector-valued functions with gradient notation.

c. Explain applications to optimization.

7. ODEs: definition, Euler method, applications to simulation

a. Apply the Euler method to integration.

b. Apply the Euler method to a single-variable differential equation.

c. Apply the Euler method to multiple variables in an ODE.

Professional Dispositions

We focus on dispositions helpful to students learning mathematics.

● Growth mindset. Perhaps the most important of the dispositions, students should be persuaded

that anyone can learn mathematics, certainly the subset foundational to CS, and that success is not

dependent on innate ability.

● Practice mindset. Students should be educated about the nature of “doing” mathematics and

learning through practice with problems as opposed to merely listening or observing demonstrations

in the classroom.

● Deferred gratification. Most students are likely to learn at least some mathematics from

mathematics departments unfamiliar with computing applications; computing departments should

acclimate the students to the notion of waiting to see computing applications. Many of the new

growth areas such as AI or quantum computing can serve as motivation.

● Persistence. Student perceptions are often driven by frustration with inability to solve hard

problems that they see some peers tackle seemingly effortlessly; computing departments should

help promote the notion that eventual success through persistence is what matters.

● Skepticism and inquiry. Students often look for “given formulas” as handed down by experts only

to be memorized and used. Yet, a theoretical mindset and, more broadly, a scientific one, should

feature skepticism and a curiosity about how formulas are established.

Mathematics Requirements

The most important topics expected from students entering a computing program typically correspond

to pre-calculus courses in high school.

Required:

● Algebra and numeracy

o Numeracy: numbers, operations, types of numbers, fluency with arithmetic, exponent

notation, rough orders of magnitude, fractions, and decimals.

o Algebra: rules of exponents, solving linear or quadratic equations with one or two variables,

factoring, algebraic manipulation of expressions with multiple variables.

● Precalculus

o Coordinate geometry: distances between points, areas of common shapes.

o Functions: function notation, drawing and interpreting graphs of functions.

133

o Exponentials and logarithms: a general familiarity with the functions and their graphs.

o Trigonometry: familiarity with basic trigonometric functions and the unit circle.

Course Packaging Suggestions

Every department faces constraints in delivering content, which precludes merely requiring a long list of

courses covering every single desired topic. These constraints include content-area ownership, faculty

size, student preparation, and limits on the number of departmental courses a curriculum can require.

We list below some options for offering mathematical foundations, combinations of which might best fit

any specific institution.

● Traditional course offerings. With this approach, a computer science department can require

students to take courses provided by mathematics departments in any of the five broad

mathematical areas listed above.

● A “Continuous Structures” analog of Discrete Structures. Many computer science departments

now offer courses that prepare students mathematically for AI and machine learning. Such courses

can combine just enough calculus, optimization, linear algebra, and probability; yet others may split

linear algebra into its own course. These courses have the advantage of motivating students with

computing applications and including programming as pedagogy for mathematical concepts.

● Integration into application courses. An application course, such as machine learning, can be

spread across two courses, with the course sequence including the needed mathematical

preparation taught just-in-time, or a single machine learning course can balance preparatory

material with new topics. This may have the advantage of mitigating turf issues and helping

students see applications immediately after encountering mathematics.

● Specific course adaptations. For nearly a century, physics and engineering needs have driven

the structure of calculus, linear algebra, and probability. Computer science departments can

collaborate with their colleagues in mathematics departments to restructure mathematics-offered

sections in those areas that are driven by computer science applications. For example, calculus

could be reorganized to fit the needs of computing programs into two calculus courses, leaving a

later third calculus course for engineering and physics students.

Committee

Chair: Rahul Simha, The George Washington University, Washington DC, USA

Members:

● Richard Blumenthal, Regis University, Denver, CO, USA

● Marc Deisenroth, University College London, London, UK

● MIkey Goldweber, Denison University, Granville, OH, USA

● David Liben-Nowell, Carleton College, Northfield, MN, USA

● Jodi Tims, Northeastern University, Boston, MA, USA

134

References

[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. “Computing Science Curricula 2013.”

(New York, USA: ACM Press and IEEE Computer Society Press, 2013).

[2] Richard D. De Veaux, Mahesh Agarwal, Maia Averett, Benjamin S. Baumer, Andrew Bray,

Thomas C. Bressoud, Lance Bryant, Lei Z. Cheng, Amanda Francis, Robert Gould, Albert Y.

Kim, Matt Kretchmar, Qin Lu, Ann Moskol, Deborah Nolan, Roberto Pelayo, Sean Raleigh,

Ricky J. Sethi, Mutiara Sondjaja, Neelesh Tiruviluamala, Paul X. Uhlig, Talitha M. Washington,

Curtis L. Wesley, David White, Ping Ye, Curriculum Guidelines for Undergraduate Programs in

Data Science, Annual Review of Statistics and Its Application, 4, 1 (2017): 15-30.

135

Networking and Communication (NC)

Preamble

Networking and communication play a central role in interconnected computer systems that are

transforming the daily lives of billions of people. The public internet provides connectivity for networked

applications that serve ever-increasing numbers of individuals and organizations around the world.

Complementing the public sector, major proprietary networks leverage their global footprints to support

cost-effective distributed computing, storage, and content delivery. Advances in satellite networks

expand connectivity to rural areas. Device-to-device communication underlies the emerging Internet of

Things.

This knowledge area deals with key concepts in networking and communication, as well as their

representative instantiations in the internet and other computer networks. Besides the basic principles

of switching and layering, the area at its core provides knowledge on naming, addressing, reliability,

error control, flow control, congestion control, domain hierarchy, routing, forwarding, modulation,

encoding, framing, and access control. The area also covers knowledge units in network security and

mobility, such as security threats, countermeasures, device-to-device communication, and multi-hop

wireless networking. In addition to the fundamental principles, the area includes their specific realization

of the Internet as well as hands-on skills in the implementation of networking and communication

concepts. Finally, the area comprises emerging topics such as network virtualization and quantum

networking.

As the main learning outcome, learners develop a thorough understanding of the role and operation of

networking and communication in networked computer systems. They learn how network structure and

communication protocols affect the behavior of distributed applications. The area can be used to

educate not only key principles but also their specific instantiations in the internet and equip the student

with hands-on implementation skills. While computer-system, networking, and communication

technologies are advancing at a fast pace, the gained fundamental knowledge enables the student to

readily apply the concepts in new technological settings.

Changes since CS2013

Compared to the 2013 curricula, the knowledge area broadens its core focus to expand on reliability

support, routing, forwarding, and single-hop communication. Due to the enhanced core, learners

acquire a deeper understanding of the impact that networking and communication have on the behavior

of distributed applications. Reflecting the increased importance of network security, the area adds a

respective knowledge unit as a new elective. To track the advancing frontiers in networking and

communication knowledge, the social networking knowledge unit was removed and an emerging

knowledge unit on topics, such as middleboxes, software-defined networks, and quantum networking,

was added. Other changes consist of redistributing all the topics from the old unit on resource allocation

among other units to resolve overlap between knowledge units in the 2013 curricula.

136

Core Hours

Knowledge Unit CS Core KA Core

Fundamentals 2.5 + 0.25 (SEP) + 0.25 (SF)

Networked Applications 3.5 + 0.25 (SEP) + 0.25

(PDC)

Reliability Support 5.75 + 0.25 (SF)

Routing And Forwarding 4

Single-Hop Communication 3

Mobility Support 4

Network Security 2.25 + 0.5 (SEC) + 0.25

(SEP)

Emerging Topics 4

Total 7 24

Knowledge Units

NC-Fundamentals: Fundamentals

CS Core:

1. Importance of networking in contemporary computing, and associated challenges. (See also: SEP-

Context, SEP-Privacy)

2. Organization of the internet (e.g., users, Internet Service Providers, autonomous systems, content

providers, content delivery networks)

3. Switching techniques (e.g., circuit and packet)

4. Layers and their roles (application, transport, network, datalink, and physical)

5. Layering principles (e.g., encapsulation and hourglass model) (See also: SF-Foundations)

6. Network elements (e.g., routers, switches, hubs, access points, and hosts)

7. Basic queueing concepts (e.g., relationship with latency, congestion, service levels, etc.)

Illustrative Learning Outcomes:

CS Core:

1. Articulate the organization of the internet.

2. List and define the appropriate network terminology.

3. Describe the layered structure of a typical networked architecture.

4. Identify the different types of complexity in a network (edges, core, etc.).

137

NC-Applications: Networked Applications

CS Core:

1. Naming and address schemes (e.g., DNS, and Uniform Resource Identifiers)

2. Distributed application paradigms (e.g., client/server, peer-to-peer, cloud, edge, and fog) (See also:

PDC-Communication, PDC-Coordination)

3. Diversity of networked application demands (e.g., latency, bandwidth, and loss tolerance) (See

also: PDC-Communication, SEP-Sustainability, SEP-Context)

4. Coverage of application-layer protocols (e.g., HTTP)

5. Interactions with TCP, UDP, and Socket APIs (See also: PDC-Programs)

Illustrative Learning Outcomes:

CS Core:

1. Define the principles of naming, addressing, resource location.

2. Analyze the needs of specific networked application demands.

3. Describe the details of one application layer protocol.

4. Implement a simple client-server socket-based application.

NC-Reliability: Reliability Support

KA Core:

1. Unreliable delivery (e.g., UDP)

2. Principles of reliability (e.g., delivery without loss, duplication, or out of order) (See also: SF-

Reliability)

3. Error control (e.g., retransmission, error correction)

4. Flow control (e.g., stop and wait, window based)

5. Congestion control (e.g., implicit and explicit congestion notification)

6. TCP and performance issues (e.g., Tahoe, Reno, Vegas, Cubic)

Illustrative Learning Outcomes:

KA Core:

1. Describe the operation of reliable delivery protocols.

2. List the factors that affect the performance of reliable delivery protocols.

3. Describe some TCP reliability design issues.

4. Design and implement a simple reliable protocol.

NC-Routing: Routing and Forwarding

KA Core:

1. Routing paradigms and hierarchy (e.g., intra/inter domain, centralized and decentralized, source

routing, virtual circuits, QoS)

2. Forwarding methods (e.g., forwarding tables and matching algorithms)

3. IP and Scalability issues (e.g., NAT, CIDR, BGP, different versions of IP)

Illustrative Learning Outcomes:

KA Core:

138

1. Describe various routing paradigms and hierarchies.

2. Describe how packets are forwarded in an IP network.

3. Describe how the Internet tackles scalability challenges. .

NC-SingleHop: Single Hop Communication

KA Core:

1. Introduction to modulation, bandwidth, and communication media

2. Encoding and Framing

3. Medium Access Control (MAC) (e.g., random access and scheduled access)

4. Ethernet and WiFi

5. Switching (e.g., spanning trees, VLANS).

6. Local Area Network Topologies (e.g., data center, campus networks).

Illustrative Learning Outcomes:

KA Core:

1. Describe some basic aspects of modulation, bandwidth, and communication media.

2. Describe in detail a MAC protocol.

3. Demonstrate understanding of encoding and framing solution tradeoffs.

4. Describe details of the implementation of Ethernet.

5. Describe how switching works.

6. Describe one kind of a LAN topology.

NC-Security: Network Security

KA Core:

1. General intro about security (Threats, vulnerabilities, and countermeasures) (See also: SEP-

Security, SEC-Foundations, SEC-Engineering)

2. Network specific threats and attack types (e.g., denial of service, spoofing, sniffing and traffic

redirection, attacker-in-the-middle, message integrity attacks, routing attacks, ransomware, and

traffic analysis) (See also: SEC-Foundations, SEC-Engineering)

3. Countermeasures (: SEC-Foundations, SEC-Crypto, SEC-Engineering)

a. Cryptography (e.g. SSL, TLS, symmetric/asymmetric)

b. Architectures for secure networks (e.g., secure channels, secure routing protocols, secure

DNS, VPNs, DMZ, Zero Trust Network Access, hyper network security, anonymous

communication protocols, isolation)

c. Network monitoring, intrusion detection, firewalls, spoofing and DoS protection, honeypots,

tracebacks, BGP Sec, RPKI

Illustrative Learning Outcomes:

KA Core:

1. Describe some of the threat models of network security.

2. Describe specific network-based countermeasures.

3. Analyze various aspects of network security from a case study.

139

NC-Mobility: Mobility

KA Core:

1. Principles of cellular communication (e.g., 4G, 5G)

2. Principles of Wireless LANs (mainly 802.11)

3. Device to device communication (e.g., IoT communication)

4. Multi-hop wireless networks (e.g., ad hoc networks, opportunistic, delay tolerant)

Illustrative Learning Outcomes:

KA Core:

1. Describe some aspects of cellular communication such as registration

2. Describe how 802.11 supports mobile users

3. Describe practical uses of device-to-device communication, as well as multihop

4. Describe one type of mobile network such as ad hoc

NC-Emerging: Emerging Topics

KA Core:

1. Middleboxes (e.g., advances in usage of AI, intent-based networking, filtering, deep packet

inspection, load balancing, NAT, CDN)

2. Network Virtualization (e.g., SDN, Data Center Networks)

3. Quantum Networking (e.g., Intro to the domain, teleportation, security, Quantum Internet)

4. Satellite, mmWave, Visible Light

Illustrative Learning Outcomes:

KA Core:

1. Describe the value of advances in middleboxes in networks.

2. Describe the importance of Software Defined Networks.

3. Describe some of the added value achieved by using Quantum Networking.

Professional Dispositions

● Meticulous: Students must be particular about the specifics of understanding and creating

networking protocols.

● Collaborative: Students must work together to develop multiple components that interact together

and to respond to failures and threats.

● Proactive: Students must be able to predict failures, threats, and how to deal with them while

avoiding reactive modes of operation only.

● Professional: Students must comply with the needs of the community and their expectations from

a networked environment, and the demands of regulatory bodies.

● Responsive: Students must act swiftly to changes in requirements in network configurations and

changing user requirements.

● Adaptive: Students need to reconfigure systems under varying modes of operation.

140

Mathematics Requirements

Required:

● MSF-Probability.

● MSF-Statistics.

● MSF-Discrete.

● MSF-Linear Simple queuing theory concepts.

Course Packaging Suggestions

Coverage of the concepts of networking including but not limited to types of applications used by the

network, reliability, routing and forwarding, single hop communication, security, and other emerging

topics.

Note: both courses cover the same knowledge units but with different allocation of hours for each

knowledge unit.

Course objectives: By the end of this course, learners should be able to understand many of the

fundamental concepts associated with networking, learn about many types of networked applications,

and develop at least one, understand basic routing and forwarding, single hop communications, and

deal with some issues pertaining to mobility, security, and emerging areas, all with embedded social,

ethical, and issues pertaining to the profession.

Introductory Course:

● NC-Fundamentals (8 hours)

● NC-Applications (12 hours)

● NC-Reliability (6 hours)

● NC-Routing (4 hours)

● NC-SingleHop (3 hours)

● NC-Mobility (3 hours)

● NC-Security (3 hours)

● SEP-Context (1 hour)

● NC-Emerging (2 hours)

Course objectives: By the end of this course, learners would have obtained a refresher about some of

the fundamental issues of networking, networked applications, reliability, and routing and forwarding,

and indulged in additional details of single hop communications, mobility, security, and emerging topics

in the area, all while considering embedded social and ethical issues as well as issues pertaining to the

profession.

Advanced Course:

● NC-Fundamentals (3 hours)

● NC-Applications (4 hours)

● NC-Reliability(7 hours)

141

● NC-Routing (6 hours)

● NC-SingleHop (5 hours)

● NC-Mobility (5 hours)

● NC-Security (5 hours)

● SEP-Privacy, SEP-Security, SEP-Sustainability (2 hours)

● NC-Emerging (5 hours)

Committee

Chair: Sherif G. Aly, The American University in Cairo, Cairo, Egypt

Members:

● Khaled Harras, Carnegie Mellon University, Pittsburgh, PA, USA

● Moustafa Youssef, The American University in Cairo, Cairo, Egypt

● Sergey Gorinsky, IMDEA Networks Institute, Madrid, Spain

● Qiao Xiang, Xiamen University, Xiamen, China

Contributors:

● Alex (Xi) Chen: Huawei, Montreal, Canada

142

143

Operating Systems (OS)

Preamble

The operating system is a collection of services needed to safely interface the hardware with

applications. Core topics focus on the mechanisms and policies needed to virtualize computation,

memory, and Input/Output (I/O). Overarching themes that are reused at many levels in computer

systems are well illustrated in operating systems (e.g., polling vs interrupts, caching, flexibility vs costs,

scheduling approaches to processes, page replacement, etc.). The Operating Systems knowledge area

contains the key underlying concepts for other knowledge areas — trust boundaries, concurrency,

persistence, and safe extensibility.

Changes since CS2013

Changes from CS2013 include:

● Renamed File Systems knowledge unit to File Systems API and Implementation knowledge

unit,

● Moved topics from the previous Performance and Evaluation knowledge unit to the Systems

Fundamentals (SF) knowledge area,

● Moved some topics from File Systems API and Implementation and Device Management to the

Advanced File Systems knowledge unit, and

● Added topics on systems programming and the creation of platform-specific executables to the

Foundations of Programming Languages (FPL) knowledge area.

Core Hours

Knowledge Unit CS Core KA Core

Role and Purpose of Operating Systems 2

Principles of Operating System 2

Concurrency 2 1

Protection and Safety 2 1

Scheduling 2

Process Model 2

Memory Management 0.5 +1.5 (AR)

Device Management 0.5+0.5 (AR)

144

File Systems API and Implementation 2

Advanced File Systems 1

Virtualization 1

Real-time and Embedded Systems 1

Fault Tolerance 1

Society, Ethics, and the Profession Included in SEP hours

Total 8 13 (+ 2 counted in AR)

Knowledge Units

OS-Purpose: Role and Purpose of Operating Systems

CS Core:

1. Operating systems mediate between general purpose hardware and application-specific software.

2. Universal operating system functions (e.g., process, user and device interfaces, persistence of

data)

3. Extended and/or specialized operating system functions (e.g., embedded systems, server types

such as file, web, multimedia, boot loaders and boot security)

4. Design issues (e.g., efficiency, robustness, flexibility, portability, security, compatibility, power,

safety, tradeoffs between error checking and performance, flexibility and performance, and security

and performance) (See also: SEC-Engineering)

5. Influences of security, networking, multimedia, parallel and distributed computing

6. Overarching concern of security/protection: Neglecting to consider security at every layer creates

an opportunity to inappropriately access resources.

 Example concepts:

a. Unauthorized access to files on an unencrypted drive can be achieved by moving the media to

another computer.

b. Operating systems enforced security can be defeated by infiltrating the boot layer before the

operating system is loaded.

c. Process isolation can be subverted by inadequate authorization checking at API boundaries.

d. Vulnerabilities in system firmware can provide attack vectors that bypass the operating system

entirely.

e. Improper isolation of virtual machine memory, computing, and hardware can expose the host

system to attacks from guest systems.

f. The operating system may need to mitigate exploitation of hardware and firmware

vulnerabilities, leading to potential performance reductions (e.g., Spectre and Meltdown

mitigations).

7. Exposure of operating systems functions in shells and systems programming. (See also: FPL-

Scripting)

145

Illustrative Learning Outcomes:

CS Core:

1. Understand the objectives and functions of modern operating systems.

2. Evaluate the design issues in different usage scenarios (e.g., real time OS, mobile, server).

3. Understand the functions of a contemporary operating system with respect to convenience,

efficiency, and the ability to evolve.

4. Understand how evolution and stability are desirable and mutually antagonistic in operating

systems function.

OS-Principles: Principles of Operating System

CS Core:

1. Operating system software design and approaches (e.g., monolithic, layered, modular, micro-

kernel, unikernel)

2. Abstractions, processes, and resources

3. Concept of system calls and links to application program interfaces (e.g., Win32, Java, Posix). (See

also: AR-Assembly)

4. The evolution of the link between hardware architecture and the operating system functions

5. Protection of resources means protecting some machine instructions/functions (See also: AR-

Assembly)

Example concepts:

a. Applications cannot arbitrarily access memory locations or file storage device addresses.

b. Protection of coprocessors and network devices

6. Leveraging interrupts from hardware level: service routines and implementations. (See also: AR-

Assembly)

 Example concepts:

a. Timer interrupts for implementing time slices

b. I/O interrupts for putting blocking threads to sleep without polling

7. Concept of user/system state and protection, transition to kernel mode using system calls (See

also: AR-Assembly)

8. Mechanism for invoking system calls, the corresponding mode and context switch and return from

interrupt (See also: AR-Assembly)

9. Performance costs of context switches and associated cache flushes when performing process

switches in Spectre-mitigated environments.

Illustrative Learning Outcomes:

CS Core:

1. Understand how the application of software design approaches to operating systems

design/implementation (e.g., layered, modular, etc.) affects the robustness and maintainability of an

operating system.

2. Categorize system calls by purpose.

3. Understand dynamics of invoking a system call (e.g., passing parameters, mode change).

4. Evaluate whether a function can be implemented in the application layer or can only be

accomplished by system calls.

146

5. Apply OS techniques for isolation, protection, and throughput across OS functions (e.g., starvation

similarities in process scheduling, disk request scheduling, semaphores, etc.) and beyond.

6. Understand how the separation into kernel and user mode affects safety and performance.

7. Understand the advantages and disadvantages of using interrupt processing in enabling

multiprogramming.

8. Analyze potential vectors of attack via the operating systems and the security features designed to

guard against them.

OS-Concurrency: Concurrency

CS Core:

1. Thread abstraction relative to concurrency

2. Race conditions, critical regions (role of interrupts, if needed) (See also: PDC-Programs)

3. Deadlocks and starvation (See also: PDC-Coordination)

4. Multiprocessor issues (spin-locks, reentrancy).

5. Multiprocess concurrency vs multithreading

KA Core:

6. Thread creation, states, structures (See also: SF-Foundations)

7. Thread APIs

8. Deadlocks and starvation (necessary conditions/mitigations) (See also: PDC-Coordination)

9. Implementing thread safe code (semaphores, mutex locks, condition variables). (See also: AR-

Performance-Energy, SF-Evaluation, PDC-Evaluation)

10. Race conditions in shared memory (See also: PDC-Coordination)

Non-Core:

11. Managing atomic access to OS objects (e.g., big kernel lock vs many small locks vs lockless data

structures like lists)

Illustrative Learning Outcomes:

CS Core:

1. Understand the advantages and disadvantages of concurrency as inseparable functions within the

operating system framework.

2. Understand how architecture level implementation results in concurrency problems including race

conditions.

3. Understand concurrency issues in multiprocessor systems.

KA Core:

4. Understand the range of mechanisms that can be employed at the operating system level to realize

concurrent systems and describe the benefits of each.

5. Understand techniques for achieving synchronization in an operating system (e.g., describe how a

semaphore can be implemented using OS primitives) including intra-concurrency control and use of

hardware atomics.

6. Accurately analyze code to identify race conditions and appropriate solutions for addressing race

conditions.

147

OS-Protection: Protection and Safety

CS Core:

1. Overview of operating system security mechanisms (See also: SEC-Foundations)

2. Attacks and antagonism (scheduling, etc.) (See also: SEC-Foundations)

3. Review of major vulnerabilities in real operating systems (See also: SEC-Foundations)

4. Operating systems mitigation strategies such as backups (See also: SF-Reliability)

KA Core:

5. Policy/mechanism separation (See also: SEC-Governance)

6. Security methods and devices (See also: SEC-Foundations)

 Example concepts:

a. Rings of protection (history from Multics to virtualized x86)

b. x86_64 rings -1 and -2 (hypervisor and ME/PSP)

7. Protection, access control, and authentication (See also: SEC-Foundations, SEC-Crypto)

Illustrative Learning Outcomes:

CS Core:

1. Understand the requirement for protection and security mechanisms in operating systems.

2. List and describe the attack vectors that leverage OS vulnerabilities.

3. Understand the mechanisms available in an OS to control access to resources.

KA Core:

4. Summarize the features and limitations of an operating system that impact protection and security.

OS-Scheduling: Scheduling

KA Core:

1. Preemptive and non-preemptive scheduling

2. Schedulers and policies (e.g., first come, first serve, shortest job first, priority, round robin,

multilevel) (See also: SF-Resource)

3. Concepts of Symmetric Multi-Processor (SMP) scheduling and cache coherence (See also: AR-

Memory)

4. Timers (e.g., building many timers out of finite hardware timers) (See also: AR-Assembly)

5. Fairness and starvation

Non-Core:

6. Subtopics of operating systems such as energy-aware scheduling and real-time scheduling (See

also: AR-Performance-Energy, SPD-Embedded, SPD-Mobile)

7. Cooperative scheduling, such as Linux futexes and userland scheduling.

Illustrative Learning Outcomes:

KA Core:

148

1. Compare and contrast the common algorithms used for both preemptive and non-preemptive

scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share

schemes.

2. Explain the relationships between scheduling algorithms and application domains.

3. Explain the distinctions among types of processor scheduler such as short-term, medium-term,

long-term, and I/O.

4. Evaluate a problem or solution to determine appropriateness for asymmetric and/or symmetric

multiprocessing.

5. Evaluate a problem or solution to determine appropriateness as a process vs threads.

6. List some contexts benefitting from preemption and deadline scheduling.

Non-Core:

7. Explain the ways that the logic embodied in scheduling algorithms are applicable to other operating

systems mechanisms, such as first come first serve or priority to disk I/O, network scheduling,

project scheduling, and problems beyond computing.

OS-Process: Process Model

KA Core:

1. Processes and threads relative to virtualization protected memory, process state, memory

isolation, etc.

2. Memory footprint/segmentation (e.g., stack, heap, etc.) (See also: AR-Assembly)

3. Creating and loading executables, shared libraries, and dynamic linking (See also: FPL-Translation)

4. Dispatching and context switching (See also: AR-Assembly)

5. Interprocess communication (e.g., shared memory, message passing, signals, environment

variables) (See also: PDC-Communication)

Illustrative Learning Outcomes:

KA Core:

1. Understand how processes and threads use concurrency features to virtualize control.

2. Understand reasons for using interrupts, dispatching, and context switching to support concurrency

and virtualization in an operating system.

3. Understand the different states that a task may pass through, and the data structures needed to

support the management of many tasks.

4. Understand the different ways of allocating memory to tasks, citing the relative merits of each.

5. Apply the appropriate interprocess communication mechanism for a specific purpose in a

programmed software artifact.

OS-Memory: Memory Management

KA Core:

1. Review of physical memory, address translation and memory management hardware (See also:

AR-Memory, MSF-Discrete)

2. Impact of memory hierarchy including cache concept, cache lookup, and per-CPU caching on

operating system mechanisms and policy (See also: AR-Memory, SF-Performance)

149

3. Logical and physical addressing, address space virtualization (See also: AR-Memory, MSF-

Discrete)

4. Concepts of paging, page replacement, thrashing and allocation of pages and frames

5. Allocation/deallocation/storage techniques (algorithms and data structure) performance and

flexibility

Example concept: Arenas, slab allocators, free lists, size classes, heterogeneously sized pages

(huge pages)

6. Memory caching and cache coherence and the effect of flushing the cache to avoid speculative

execution vulnerabilities (See also: AR-Organization, AR-Memory, SF-Performance)

7. Security mechanisms and concepts in memory management including sandboxing, protection,

isolation, and relevant vectors of attack (See also: SEC-Foundations)

Non-Core:

8. Virtual memory: leveraging virtual memory hardware for OS services and efficiency

Illustrative Learning Outcomes:

KA Core:

1. Explain memory hierarchy and cost-performance tradeoffs.

2. Summarize the principles of virtual memory as applied to caching and paging.

3. Evaluate the tradeoffs in terms of memory size (main memory, cache memory, auxiliary memory)

and processor speed.

4. Describe the reason for and use of cache memory (performance and proximity, how caches

complicate isolation and virtual machine abstraction).

5. Code/Develop efficient programs that consider the effects of page replacement and frame allocation

on the performance of a process and the system in which it executes.

Non-Core:

6. Explain how hardware is utilized for efficient virtualization

OS-Devices: Device management

KA Core:

1. Buffering strategies (See also: AR-IO)

2. Direct Memory Access (DMA) and polled I/O, Memory-mapped I/O (See also: AR-IO)

Example concept: DMA communication protocols (e.g., ring buffers etc.)

3. Historical and contextual - Persistent storage device management (e.g., magnetic, Solid State

Device (SSD)) (See also: SEP-History)

Non-Core:

4. Device interface abstractions, hardware abstraction layer

5. Device driver purpose, abstraction, implementation, and testing challenges

6. High-level fault tolerance in device communication

Illustrative Learning Outcomes:

KA Core:

150

1. Explain architecture level device control implementation and link relevant operating system

mechanisms and policy (e.g., buffering strategies, direct memory access).

2. Explain OS device management layers and the architecture (e.g., device controller, device driver,

device abstraction).

3. Explain the relationship between the physical hardware and the virtual devices maintained by the

operating system.

4. Explain I/O data buffering and describe strategies for implementing it.

5. Describe the advantages and disadvantages of direct memory access and discuss the

circumstances in which its use is warranted.

Non-Core:

6. Describe the complexity and best practices for the creation of device drivers.

OS-Files: File Systems API and Implementation

KA Core:

1. Concept of a file including data, metadata, operations, and access-mode

2. File system mounting

3. File access control

4. File sharing

5. Basic file allocation methods, including linked allocation table

6. File system structures comprising file allocation including various directory structures and methods

for uniquely identifying files (e.g., name, identified or metadata storage location)

7. Allocation/deallocation/storage techniques (algorithms and data structure) impact on performance

and flexibility (i.e., internal and external fragmentation and compaction)

8. Free space management such as using bit tables vs linking

9. Implementation of directories to segment and track file location

Illustrative Learning Outcomes:

KA Core:

1. Explain the choices to be made in designing file systems.

2. Evaluate different approaches to file organization, recognizing the strengths and weaknesses of

each.

3. Apply software constructs appropriately given knowledge of the file system implementation.

OS-Advanced-Files: Advanced File systems

KA Core:

1. File systems: partitioning, mount/unmount, virtual file systems

2. In-depth implementation techniques

3. Memory-mapped files (See also: AR-IO)

4. Special-purpose file systems

5. Naming, searching, access, backups

6. Journaling and log-structured file systems (See also: SF-Reliability)

151

Non-Core: (including emerging topics)

1. Distributed file systems

2. Encrypted file systems

3. Fault tolerance

Illustrative Learning Outcomes:

KA Core:

1. Explain how hardware developments have led to changes in the priorities for the design and the

management of file systems.

2. Map file abstractions to a list of relevant devices and interfaces.

3. Identify and categorize different mount types.

4. Explain specific file systems requirements and the specialized file systems features that meet those

requirements.

5. Explain the use of journaling and how log-structured file systems enhance fault tolerance.

Non-Core:

6. Explain purpose and complexity of distributed file systems.

7. List examples of distributed file systems protocols.

8. Explain mechanisms in file systems to improve fault tolerance.

OS-Virtualization: Virtualization

KA Core:

1. Using virtualization and isolation to achieve protection and predictable performance. (See also: SF-

Performance)

2. Advanced paging and virtual memory. (See also: SF-Performance)

3. Virtual file systems and virtual devices.

4. Containers and their comparison to virtual machines.

5. Thrashing (e.g., Popek and Goldberg requirements for recursively virtualizable systems).

Non-core:

6. Types of virtualizations (including hardware/software, OS, server, service, network). (See also: SF-

Performance)

7. Portable virtualization; emulation vs isolation. (See also: SF-Performance)

8. Cost of virtualization. (See also: SF-Performance)

9. Virtual machines and container escapes, dangers from a security perspective. (See also: SEC-

Engineering)

10. Hypervisors- hardware virtual machine extensions, hosts with kernel support, QEMU KVM

Illustrative Learning Outcomes:

KA Core:

1. Explain how hardware architecture provides support and efficiencies for virtualization.

2. Explain the difference between emulation and isolation.

3. Evaluate virtualization tradeoffs.

152

Non-Core:

4. Explain hypervisors and the need for them in conjunction with different types of hypervisors.

OS-Real-time: Real-time and Embedded Systems

KA Core:

1. Process and task scheduling.

2. Deadlines and real-time issues. (See also: SPD-Embedded)

3. Low-latency vs ”soft real-time" vs "hard real time." (See also: SPD-Embedded, FPL-Event-Driven)

Non-Core:

4. Memory/disk management requirements in a real-time environment.

5. Failures, risks, and recovery.

6. Special concerns in real-time systems (safety).

Illustrative Learning Outcomes:

KA Core:

1. Explain what makes a system a real-time system.

2. Explain latency and its sources in software systems and its characteristics.

3. Explain special concerns that real-time systems present, including risk, and how these concerns are

addressed.

Non-Core:

4. Explain specific real time operating systems features and mechanisms.

OS-Faults: Fault tolerance

KA Core:

1. Reliable and available systems. (See also: SF-Reliability)

2. Software and hardware approaches to address tolerance (RAID). (See also: SF-Reliability)

Non-Core:

3. Spatial and temporal redundancy. (See also: SF-Reliability)

4. Methods used to implement fault tolerance. (See also: SF-Reliability)

5. Error identification and correction mechanisms, checksums of volatile memory in RAM. (See also:

AR-Memory)

6. File system consistency check and recovery.

7. Journaling and log-structured file systems. (See also: SF-Reliability)

8. Use-cases for fault-tolerance (databases, safety-critical). (See also: SF-Reliability)

9. Examples of OS mechanisms for detection, recovery, restart to implement fault tolerance, use of

these techniques for the OS’s own services. (See also: SF-Reliability)

Illustrative Learning Outcomes:

KA Core:

1. Explain how operating systems can facilitate fault tolerance, reliability, and availability.

153

2. Explain the range of methods for implementing fault tolerance in an operating system.

3. Explain how an operating system can continue functioning after a fault occurs.

4. Explain the performance and flexibility tradeoffs that impact using fault tolerance.

Non-Core:

5. Describe operating systems fault tolerance issues and mechanisms in detail.

OS-SEP: Society, Ethics, and the Profession

KA Core:

1. Open source in operating systems. (See also: SEP-IP)

 Example concepts:

a. Identification of vulnerabilities in open-source kernels,

b. Open-source guest operating systems,

c. Open-source host operating systems, and

d. Changes in monetization (paid vs free upgrades).

2. End-of-life issues with sunsetting operating systems.

Example concept: Privacy implications of using proprietary operating systems/operating

environments, including telemetry, automated scanning of personal data, built-in advertising, and

automatic cloud integration.

Illustrative Learning Outcomes:

KA Core:

1. Explain advantages and disadvantages of finding and addressing bugs in open-source kernels.

2. Contextualize history and positive and negative impact of Linux as an open-source product.

3. List complications with reliance on operating systems past end-of-life.

4. Understand differences in finding and addressing bugs for various operating systems payment

models.

Professional Dispositions

● Proactive: Students must anticipate the security and performance implications of how operating

systems components are used.

● Meticulous: Students must carefully analyze the implications of operating system mechanisms on

any project.

Mathematics Requirements
Required:

● MSF-Discrete

Course Packaging Suggestions

Introductory Course to include the following:

154

● OS-Purpose (3 hours)

● OS-Principles (3 hours)

● OS-Concurrency (7 hours)

● OS-Scheduling (3 hours)

● OS-Process (3 hours)

● OS-Memory (4 hours)

● OS-Protection (4 hours)

● OS-Devices (2 hours)

● OS-Files (2 hours)

● OS-Virtualization (3 hours)

● OS-Advanced-Files (2 hours)

● OS-Real-time (1 hour)

● OS-Faults (1 hour)

● OS-SEP (4 hours)

Prerequisites:

● AR-Assembly

● AR-Memory

● AR-Reliability

● AR-IO

● AR-Organization

● MSF-Discrete

Course objectives: Students should understand the impact and implications of operating system

resource management in terms of performance and security. They should understand and implement

inter-process communication mechanisms safely. They should be able to differentiate between the use

and evaluation of open-source and/or proprietary operating systems. They should understand

virtualization as a feature of safe modern operating system implementation.

Committee

Chair: Monica D. Anderson, University of Alabama, Tuscaloosa, AL, USA

Members:

● Qiao Xiang, Xiamen University, Xiamen, China

● Mikey Goldweber, Denison University, Granville, OH, USA

● Marcelo Pias, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil

● Avi Silberschatz, Yale University, New Haven, CT, USA

● Renzo Davoli, University of Bologna, Bologna, Italy

155

Parallel and Distributed Computing (PDC)

Preamble

Parallel and distributed programming arranges, coordinates, and controls multiple computations

occurring at the same time across different places. The ubiquity of parallelism and distribution are

inevitable consequences of increasing numbers of gates in processors, processors in computers, and

computers everywhere that may be used to improve performance compared to sequential programs,

while also coping with the intrinsic interconnectedness of the world, and the possibility that some

components or connections fail or behave maliciously. Parallel and distributed programming removes

the restrictions of sequential programming that require computational steps to occur in a serial order in

a single place, revealing further distinctions, techniques, and analyses applying at each layer of

computing systems.

In most conventional usage, “parallel” programming focuses on establishing and coordinating multiple

activities that may occur at the same time, “distributed” programming focuses on establishing and

coordinating activities that may occur in different places, and “concurrent” programming focuses on

interactions of ongoing activities with each other and the environment. However, all three terms may

apply in most contexts. Parallelism generally implies some form of distribution because multiple

activities occurring without sequential ordering constraints happen in multiple physical places (unless

they rely on context-switching or quantum effects). Conversely, actions in different places need not

bear any specific sequential ordering with respect to each other in the absence of communication

constraints.

Parallel, distributed, and concurrent programming techniques form the core of High Performance

Computing (HPC), distributed systems, and increasingly, nearly every computing application. The PDC

knowledge area has evolved from a diverse set of advanced topics into a central body of knowledge

and practice, permeating almost every other aspect of computing. Growth of the field has occurred

irregularly across different subfields of computing, sometimes with different goals, terminology, and

practices, masking the considerable overlap of basic ideas and skills that are the primary focus of this

knowledge area. Nearly every problem with a sequential solution also admits parallel and/or distributed

solutions; additional problems and solutions arise only in the context of concurrency. Nearly every

application domain of parallel and distributed computing is a well-developed area of study and/or

engineering too large to enumerate.

Overview

This knowledge area is divided into five knowledge units, each with CS Core and KA Core topics that

extend but do not overlap CS Core coverage that appears in other knowledge areas. The five

knowledge units cover: The nature of parallel and distributed Programs and their execution;

Communication (via channels, memory, or shared data stores), Coordination among parallel

activities to achieve common outcomes; Evaluation with respect to specifications, and Algorithms

across multiple application domains.

156

CS Core topics span approaches to parallel and distributed computing but restrict coverage to those

that apply to nearly all of them. Learning outcomes include developing small programs (in a choice of

several styles) with multiple activities and analyzing basic properties. The topics and hours do not

include coverage of specific languages, tools, frameworks, systems, and platforms needed as a basis

for implementing and evaluating concepts and skills. The topics also avoid reliance on specifics that

may vary widely (for example GPU programming vs cloud container deployment scripts), Prerequisites

for CS Core coverage include the following.

● SDF-Fundamentals: programs, executions, specifications, implementations, variables, arrays,

sequential control flow, procedural abstraction and invocation, Input/Output.

● SF-Overview: Layered systems, state machines, reliability.

● AR-Assembly, AR-Memory: von Neumann architecture, memory hierarchy.

● MSF-Discrete: Discrete structures including directed graphs.

Additionally, Foundations of Programming Languages (FPL) may be treated as a prerequisite,

depending on other curricular choices. CS Core requires familiarity with languages and platforms that

enable construction of parallel and distributed programs. Also, PDC includes definitions of safety,

liveness, and related concepts that are covered with respect to language properties and semantics in

FPL. Similarly, PDC CS Core includes concepts that are further developed in the context of network

protocols in Networking and Communication (NC), Operating Systems (OS), and Security (SEC), that

could be covered in any order.

KA Core topics in each unit are of the form “one or more of the following” for a la carte topics extending

associated core topics. Any selection of KA-core topics meeting the KA Core hour requirement

constitutes fulfillment of the KA Core. This structure permits variation in coverage depending on the

focus of any given course (see below for examples). Depth of coverage of any KA Core subtopic is

expected to vary according to course goals. For example, shared-memory coordination is a central

topic in multicore programming, but much less so in most heterogeneous systems, and conversely for

bulk data transfer. Similarly, fault tolerance is central to the design of distributed information systems,

but much less so in most data-parallel applications.

Changes since CS2013

This knowledge area has been refactored to focus on commonalities across different forms of parallel

and distributed computing, also enabling more flexibility in KA Core coverage, with more guidance on

coverage options.

Core Hours

Knowledge Unit CS Core hours KA Core hours

Programs 2 2

Communication 2 6

157

Coordination 2 6

Evaluation 1 3

Algorithms 2 9

Society, Ethics, and the Profession Included in SEP hours

Total 9 26

Knowledge Units

PDC-Programs: Programs

CS Core:

1. Parallelism

a. Declarative parallelism: Determining which actions may, or must not, be performed in

parallel, at the level of instructions, functions, closures, composite actions, sessions, tasks,

and services is the main idea underlying PDC algorithms; failing to do so is the main source

of errors. (See also: PDC-Algorithms)

b. Defining order: for example, using happens-before relations or series/parallel directed

acyclic graphs representing programs.

c. Independence: determining when ordering does not matter, in terms of commutativity,

dependencies, preconditions.

d. Ensuring ordering among otherwise parallel actions when necessary, including locking, safe

publication; and imposing communication – sending a message happens before receiving it;

conversely relaxing when unnecessary.

2. Distribution

a. Defining places, as devices executing actions, including hardware components, remote

hosts, may also include external, uncontrolled devices, hosts, and users. (See also: AR-IO)

b. One device may time-slice or otherwise emulate multiple parallel actions by fewer

processors by scheduling and virtualization. (See also: OS-Scheduling)

c. Naming or identifying places (e.g., device IDs) and actions as parties (e.g., thread IDs).

d. Activities across places may communicate across media. (See also: PDC-Communication)

3. Starting activities

a. Options that enable actions to be performed (eventually) at places range from hardwiring to

configuration scripts; also establishing communication and resource management; these are

expressed differently across languages and contexts, usually relying on automated

provisioning and management by platforms (See also: SF-Resources)

b. Procedural: Enabling multiple actions to start at a given program point; for example, starting

new threads, possibly scoping, or otherwise organizing them in hierarchical groups

c. Reactive: Enabling upon an event by installing an event handler, with less control of when

actions begin or end, and may apply even on uniprocessors

d. Dependent: Enabling upon completion of others; for example, sequencing sets of parallel

actions (See also: PDC-Coordination)

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.4sv44056r9gg

158

e. Granularity: Execution cost of action bodies should outweigh the overhead of arranging

them

4. Execution Properties

a. Nondeterministic execution of unordered actions

b. Consistency: Ensuring agreement among parties about values and predicates when

necessary to avoid races, maintain safety and atomicity, or arrive at consensus

c. Fault tolerance: Handling failures in parties or communication, including (Byzantine)

misbehavior due to untrusted parties and protocols, when necessary to maintain progress or

availability (See also: SF-Reliability)

d. Tradeoffs are one focus of evaluation (See also: PDC-Evaluation)

KA Core:

5. One or more of the following mappings and mechanisms across layered systems:

a. CPU data- and instruction-level-parallelism (See also: AR-Organization)

b. SIMD and heterogeneous data parallelism (See also: AR-Heterogeneity)

c. Multicore scheduled concurrency, tasks, actors (See also: OS-Scheduling)

d. Clusters, clouds; elastic provisioning. (See also: SPD-Common)

e. Networked distributed systems (See also: NC-Applications)

f. Emerging technologies such as quantum computing and molecular computing

Illustrative Learning Outcomes;

CS Core:

1. Graphically show (as a Directed Acyclic Graph (DAG)) how to parallelize a compound numerical

expression; for example, a = (b + c) * (d + e).

2. Explain why the concepts of consistency and fault tolerance do not arise in purely sequential

programs.

KA Core:

3. Write a function that efficiently counts events such as networking packet receptions.

4. Write a filter/map/reduce program in multiple styles.

5. Write a service that creates a thread (or other procedural form of activation) to return a requested

web page to each new client.

PDC-Communication: Communication

CS Core:

1. Media

a. Varieties: channels (message passing or I/O), shared memory, heterogeneous, data stores

b. Reliance on the availability and nature of underlying hardware, connectivity, and protocols;

language support, emulation (See also: AR-IO)

2. Channels

a. Explicit (usually named) party-to-party communication media

b. APIs: Sockets, architectural, language-based, and toolkit constructs, such as Message

Passing Interface (MPI), and layered constructs such as Remote Procedure Call (RPC) (See

also: NC-Fundamentals)

c. I/O channel APIs

159

3. Memory

a. Shared memory architectures in which parties directly communicate only with memory at

given addresses, with extensions to heterogeneous memory supporting multiple memory

stores with explicit data transfer across them; for example, GPU local and shared memory,

Direct Memory Access (DMA)

b. Memory hierarchies: Multiple layers of sharing domains, scopes, and caches; locality:

latency, false-sharing

c. Consistency properties: Bitwise atomicity limits, coherence, local ordering

4. Data Stores

a. Cooperatively maintained data structures implementing maps and related ADTs

b. Varieties: Owned, shared, sharded, replicated, immutable, versioned

KA Core:

5. One or more of the following properties and extensions

a. Topologies: Unicast, Multicast, Mailboxes, Switches; Routing via hardware and software

interconnection networks

b. Media concurrency properties: Ordering, consistency, idempotency, overlapping

communication with computation

c. Media performance: Latency, bandwidth (throughput) contention (congestion),

responsiveness (liveness), reliability (error and drop rates), protocol-based progress (acks,

timeouts, mediation)

d. Media security properties: integrity, privacy, authentication, authorization (See also: SEC-

Secure Coding)

e. Data formats: Marshaling, validation, encryption, compression

f. Channel policies: Endpoints, sessions, buffering, saturation response (waiting vs dropping),

rate control

g. Multiplexing and demultiplexing many relatively slow I/O devices or parties; completion-

based and scheduler-based techniques; async-await, select and polling APIs

h. Formalization and analysis of channel communication; for example, CSP

i. Applications of queuing theory to model and predict performance.

j. Memory models: sequential and release/acquire consistency

k. Memory management; including reclamation of shared data; reference counts and

alternatives

l. Bulk data placement and transfer; reducing message traffic and improving locality;

overlapping data transfer and computation; impact of data layout such as array-of-structs vs

struct-of-arrays

m. Emulating shared memory: distributed shared memory, Remote Direct Memory Access

(RDMA)

n. Data store consistency: Atomicity, linearizability, transactionality, coherence, causal

ordering, conflict resolution, eventual consistency, blockchains

o. Faults, partitioning, and partial failures; voting; protocols such as Paxos and Raft.

p. Design tradeoffs among consistency, availability, partition (fault) tolerance; impossibility of

meeting all at once

q. Security and trust: Byzantine failures, proof of work and alternatives

160

Illustrative Learning Outcomes:

CS Core:

1. Explain the similarities and differences among: (1) Party A sends a message on channel X with

contents 1 received by party B (2) A sets shared variable X to 1, read by B (3) A sets “X=1’ in a

distributed shared map accessed by B.

KA Core:

2. Write a program that distributes different segments of a data set to multiple workers, and collects

results (for the simplest example, summing segments of an array).

3. Write a parallel program that requests data from multiple sites and summarizes them using some

form of reduction.

4. Compare the performance of buffered versus unbuffered versions of a producer-consumer

program.

5. Determine whether a given communication scheme provides sufficient security properties for a

given usage.

6. Give an example of an ordering of accesses among concurrent activities (e.g., program with a data

race) that is not sequentially consistent.

7. Give an example of a scenario in which blocking message sends can deadlock.

8. Describe at least one design technique for avoiding liveness failures in programs using multiple

locks.

9. Write a program that illustrates memory-access or message reordering.

10. Describe the relative merits of optimistic versus conservative concurrency control under different

rates of contention among updates.

11. Give an example of a scenario in which an attempted optimistic update may never complete.

12. Modify a concurrent system to use a more scalable, reliable, or available data store.

13. Using an existing platform supporting replicated data stores, write a program that maintains a key-

value mapping even when one or more hosts fail.

PDC-Coordination: Coordination

CS Core:

1. Dependencies

a. Initiation or progress of one activity may be dependent on other activities, so as to avoid

race conditions, ensure termination, or meet other requirements

b. Ensuring progress by avoiding dependency cycles, using monotonic conditions, removing

inessential dependencies

2. Control constructs and design patterns

a. Completion-based: Barriers, joins, including termination control

b. Data-enabled: Queues, producer-consumer designs

c. Condition-based: Polling, retrying, backoffs, helping, suspension, signaling, timeouts

d. Reactive: Enabling and triggering continuations

3. Atomicity

a. Atomic instructions, enforced local access orderings

b. Locks and mutual exclusion; lock granularity

161

c. Using locks in a specific language; maintaining liveness without introducing races

d. Deadlock avoidance: Ordering, coarsening, randomized retries; backoffs, encapsulation via

lock managers

e. Common errors: Failing to lock or unlock when necessary, holding locks while invoking

unknown operations

f. Avoiding locks: replication, read-only, ownership, and non-blocking constructions

KA Core:

4. One or more of the following properties and extensions

a. Progress properties including lock-free, wait-free, fairness, priority scheduling, interactions

with consistency, reliability

b. Performance with respect to contention, granularity, convoying, scaling

c. Non-blocking data structures and algorithms

d. Ownership and resource control

e. Lock variants and alternatives: sequence locks, read-write locks; Read-Copy-Update (RCU),

reentrancy; tickets; controlling spinning versus blocking

f. Transaction-based control: Optimistic and conservative

g. Distributed locking: reliability

h. Alternatives to barriers: Clocks; counters, virtual clocks; dataflow and continuations; futures

and RPC; consensus-based, gathering results with reducers and collectors

i. Speculation, selection, cancellation; observability and security consequences

j. Resource control using semaphores and condition variables

k. Control flow: Scheduling computations, series-parallel loops with (possibly elected) leaders,

pipelines and streams, nested parallelism

l. Exceptions and failures. Handlers, detection, timeouts, fault tolerance, voting

Illustrative Learning Outcomes:

CS Core:

1. Show how to avoid or repair a race error in a given program.

2. Show how to ensure that a program correctly terminates when all of a set of concurrent tasks

have completed.

KA Core:

3. Write a function that efficiently counts events such as sensor inputs or networking packet

receptions.

4. Write a filter/map/reduce program in multiple styles.

5. Write a program in which the termination of one set of parallel actions is followed by another.

6. Write a program that speculatively searches for a solution by multiple activities, terminating

others when one is found.

7. Write a program in which a numerical exception (such as divide by zero) in one activity causes

termination of others.

8. Write a program for multiple parties to agree upon the current time of day; discuss its limitations

compared to protocols such as network transfer protocol (NTP).

162

9. Write a service that creates a thread (or other procedural form of activation) to return a

requested web page to each new client.

PDC-Evaluation: Evaluation

CS Core:

1. Safety and liveness requirements in terms of temporal logic constructs to express “always” and

“eventually” (See also: FPL-Parallel)

2. Identifying, testing for, and repairing violations, including common forms of errors such as failure to

ensure necessary ordering (race errors), atomicity (including check-then-act errors), and

termination (livelock)

3. Performance requirements metrics for throughput, responsiveness, latency, availability, energy

consumption, scalability, resource usage, communication costs, waiting and rate control, fairness;

service level agreements (See also: SF-Performance)

4. Performance impact of design and implementation choices, including granularity, overhead,

consensus costs, and energy consumption (See also: SEP-Sustainability)

5. Estimating scalability limitations, for example using Amdahl’s Law or Universal Scalability Law (See

also: SF-Evaluation)

KA Core:

6. One or more of the following methods and tools:

a. Extensions to formal sequential requirements such as linearizability

b. Protocol, session, and transactional specifications

c. Use of tools such as Unified Modelling Language (UML), Temporal Logic of Actions (TLA),

program logics

d. Security analysis: safety and liveness in the presence of hostile or buggy behaviors by other

parties; required properties of communication mechanisms (for example lack of cross-layer

leakage), input screening, rate limiting (See also: SEC-Foundations)

e. Static analysis applied to correctness, throughput, latency, resources, energy (See also:

SEP-Sustainability)

f. Directed Acyclic Graph (DAG) model analysis of algorithmic efficiency (work, span, critical

paths)

g. Testing and debugging; tools such as race detectors, fuzzers, lock dependency checkers,

unit/stress/torture tests, visualizations, continuous integration, continuous deployment, and

test generators

h. Measuring and comparing throughput, overhead, waiting, contention, communication, data

movement, locality, resource usage, behavior in the presence of excessive numbers of

events, clients, or threads (See also: SF-Evaluation)

i. Application domain specific analyses and evaluation techniques

Illustrative Learning Outcomes:

CS Core:

1. Revise a specification to enable parallelism and distribution without violating other essential

properties or features.

2. Explain how concurrent notions of safety and liveness extend their sequential counterparts.

163

3. Specify a set of invariants that must hold at each bulk-parallel step of a computation.

4. Write a test program that can reveal a data race error; for example, missing an update when two

activities both try to increment a variable.

5. In a given context, explain the extent to which introducing parallelism in an otherwise sequential

program would be expected to improve throughput and/or reduce latency, and how it may impact

energy efficiency.

6. Show how scaling and efficiency change for sample problems without and with the assumption of

problem size changing with the number of processors; further explain whether and how scalability

would change under relaxations of sequential dependencies.

KA Core:

7. Specify and measure behavior when a service is requested by unexpectedly many clients.

8. Identify and repair a performance problem due to sequential bottlenecks.

9. Empirically compare throughput of two implementations of a common design (perhaps using an

existing test harness framework).

10. Identify and repair a performance problem due to communication or data latency.

11. Identify and repair a performance problem due to communication or data latency.

12. Identify and repair a performance problem due to resource management overhead.

13. Identify and repair a reliability or availability problem.

PDC-Algorithms: Algorithms

CS Core:

1. Expressing and implementing algorithms in given languages and frameworks, to initiate activities

(for example threads), use shared memory constructs, and channel, socket, and/or remote

procedure call APIs. (See also: FPL-Parallel).

a. Data parallel examples including map/reduce.

b. Using channel, socket, and/or RPC APIs in a given language, with program control for

sending (usually procedural) vs receiving. (usually reactive or RPC-based).

c. Using locks, barriers, and/or synchronizers to maintain liveness without introducing races.

2. Survey of common application domains across multicore, reactive, data parallel, cluster, cloud,

open distributed systems, and frameworks (with reference to the following table).

Category Typical

Execution agents

Typical

Communication

mechanisms

Typical

Algorithmic

domains

Typical

Engineering

goals

Multicore

Threads Shared memory,

Atomics, locks

Resource

management,

data processing

Throughput,

latency,

energy

Reactive Handlers, threads I/O Channels Services, real-

time

Latency

164

Data parallel GPU, SIMD,

accelerators,

hybrid

Heterogeneous

memory

Linear algebra,

graphics, data

analysis

Throughput,

energy

Cluster Managed hosts Sockets, channels Simulation, data

analysis

Throughput

Cloud Provisioned hosts Service APIs Web

applications

Scalability

Open

distributed

Autonomous hosts Sockets, Data

stores

Fault tolerant

data stores and

services

Reliability

KA Core:

3. One of more of the following algorithmic domains. (See also: AL-Strategies):

a. Linear algebra: Vector and matrix operations, numerical precision/stability, applications in

data analytics and machine learning.

b. Data processing: sorting, searching and retrieval, concurrent data structures.

c. Graphs, search, and combinatorics: Marking, edge-parallelization, bounding, speculation,

network-based analytics.

d. Modeling and simulation: differential equations; randomization, N-body problems, genetic

algorithms.

e. Computational logic: satisfiability (SAT), concurrent logic programming.

f. Graphics and computational geometry: Transforms, rendering, ray-tracing.

g. Resource management: Allocating, placing, recycling and scheduling processors, memory,

channels, and hosts; exclusive vs shared resources; static, dynamic and elastic algorithms;

Real-time constraints; Batching, prioritization, partitioning; decentralization via work-stealing

and related techniques.

h. Services: Implementing web APIs, electronic currency, transaction systems, multiplayer

games.

Illustrative Learning Outcomes:

CS Core:

1. Implement a parallel/distributed component based on a known algorithm.

2. Write a data-parallel program that for example computes the average of an array of numbers.

3. Write a producer-consumer program in which one component generates numbers, and another

computes their average. Measure speedups when the numbers are small scalars versus large

multi-precision values.

4. Extend an event-driven sequential program by establishing a new activity in an event handler (for

example a new thread in a GUI action handler).

5. Improve the performance of a sequential component by introducing parallelism and/or distribution.

6. Choose among different parallel/distributed designs for components of a given system.

165

KA Core:

7. Design, implement, analyze, and evaluate a component or application for X operating in a given

context, where X is in one of the listed domains, for example, a genetic algorithm for factory floor

design.

8. Critique the design and implementation of an existing component or application, or one developed

by classmates.

9. Compare the performance and energy efficiency of multiple implementations of a similar design, for

example, multicore versus clustered versus GPU.

Professional Dispositions

● Meticulous: Students’ attention to detail is essential when applying constructs with non-obvious

correctness conditions.

● Persistent: Students must be prepared to try alternative approaches when solutions are not self-

evident.

Mathematics Requirements

Required:

● MSF-Discrete – Logic, discrete structures including directed graphs.

Desired:

● MSF-Linear

● MSF-Calculus – Differential equations

Course Packaging Suggestions

The CS Core requirements need not be provided by a single course. They may be included across

courses primarily devoted to software development, programming languages, systems, data

management, networking, computer architecture, and/or algorithms.

Alternatively, the CS Core provides a basis for courses focusing on parallel and/or distributed

computing. At one extreme, it is possible to offer a single broadly constructed course covering all PDC

KA Core topics to varying depths. At the other extreme, it is possible to infuse PDC KA Core coverage

across the curriculum with courses that cover parallel and distributed approaches alongside sequential

ones for nearly every topic in computing. More conventional choices include courses that focus on one

or a few categories (such as multicore or cluster), and algorithmic domains (such as linear algebra, or

resource management). Such courses may go into further depth than listed in one or more KUs, and

include additional software development experience, but include only CS-Core-level coverage of other

topics.

As an example, a course mainly focusing on multicores could extend CS Core topics as follows.

1. Programs: KA Core on threads, tasks, instruction-level parallelism.

2. Communication: KA Core on multicore architectures, memory, concurrent data stores.

166

3. Coordination: KA Core on blocking and non-blocking synchronization, speculation, cancellation,

futures, and divide-and-conquer data parallelism.

4. Evaluation: KA Core on performance analysis.

5. Algorithms: project-based KA Core coverage of data processing and resource management.

More extensive examples and guidance for courses focusing on HPC are provided by the NSF/IEEE-

TCPP Curriculum Initiative on Parallel and Distributed Computing [1].

Committee

Chair: Doug Lea, State University of New York at Oswego, Oswego, NY, USA

Members:

● Sherif Aly, American University of Cairo, Cairo, Egypt

● Michael Oudshoorn, High Point University, High Point, NC, USA

● Qiao Xiang, Xiamen University, Xiamen, China

● Dan Grossman, University of Washington, Seattle, WA, USA

● Sebastian Burckhardt, Microsoft Research, Redmond WA, USA

● Vivek Sarkar, Georgia Tech, Atlanta, GA, USA

● Maurice Herlihy, Brown University, Providence, RI, USA

● Sheikh Ghafoor, Tennessee Tech, Cookeville, TN, USA

● Chip Weems, University of Massachusetts, Amherst, MA, USA

Contributors:

● Paul McKenney, Meta, Beaverton, OR, USA

● Peter Buhr, University of Waterloo, Waterloo, Ontario, Canada

References

[1] Prasad, S. K., Estrada, T., Ghafoor, S., Gupta, A., Kant, K., Stunkel, C., Sussman, A.,

Vaidyanathan, R., Weems, C., Agrawal, K., Barnas, M., Brown, D. W., Bryant, R., Bunde, D. P.,

Busch, C., Deb, D., Freudenthal, E., Jaja, J., Parashar, M., Phillips, C., Robey, B., Rosenberg,

A., Saule, E., Shen, C. 2020. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed

Computing - Core Topics for Undergraduates, Version II-beta,

Online: http://tcpp.cs.gsu.edu/curriculum/, 53 pages. Accessed March 2024.

http://tcpp.cs.gsu.edu/curriculum/

167

Software Development Fundamentals (SDF)

Preamble

Fluency in the process of software development is fundamental to the study of computer science. To

use computers to solve problems most effectively, students must be competent at reading and writing

programs. Beyond programming skills, however, they must be able to select and use appropriate data

structures and algorithms and use modern development and testing tools.

The SDF knowledge area brings together fundamental concepts and skills related to software

development, focusing on concepts and skills that should be taught early in a computer science

program, typically in the first year. This includes fundamental programming concepts and their effective

use in writing programs, use of fundamental data structures which may be provided by the

programming language, basics of programming practices for writing good quality programs, reading,

and understanding programs, and some understanding of the impact of algorithms on the performance

of the programs. The 43 hours of material in this knowledge area may be augmented with core material

from other knowledge areas as students progress to mid- and upper-level courses.

This knowledge area assumes a contemporary programming language with built-in support for common

data types including associative data types like dictionaries/maps as the vehicle for introducing

students to programming (e.g., Python, Java). However, this is not to discourage the use of older or

lower-level languages for SDF — the knowledge units below can be suitably adapted for the actual

language used.

The emergence of generative AI and Large Language Models (LLMs), which can generate programs

for many programming tasks, will undoubtedly affect the programming profession and consequently the

teaching of many CS topics. However, to be able to effectively use generative AI in programming tasks,

a programmer must have a good understanding of programs, and hence must still learn the foundations

of programming and develop basic programming skills - which is the aim of SDF. Consequently, we feel

that the desired outcomes for SDF should remain the same, though different instructors may now give

more emphasis to program understanding, documenting, specifications, analysis, and testing. (This is

like teaching students multiplication, addition, etc. even though calculators can be used to do them).

Changes since CS 2013

The main change from 2013 is a stronger emphasis on developing fundamental programming skills and

effective use of in-built data structures (which many contemporary languages provide) for problem

solving.

Overview

This Knowledge Area has five knowledge units which follow.

1. SDF-Fundamentals: Fundamental Programming Concepts and Practices – This knowledge unit

aims to develop an understanding of basic concepts, and the ability to fluently use basic language

168

constructs as well as modularity constructs. It also aims to familiarize students with the concept of

common libraries and frameworks, including those to facilitate API-based access to resources.

2. SDF-Data-Structures: Fundamental Data Structures – This knowledge unit aims to develop core

concepts relating to Data Structures and associated operations. Students should understand the

important data structures available in the programming language or as libraries, and how to use

them effectively, including choosing appropriate data structures while designing solutions for a

given problem.

3. SDF-Algorithms: Algorithms – This knowledge unit aims to develop the foundations of algorithms

and their analysis. The KU should also empower students in selecting suitable algorithms for

building modest-complexity applications.

4. SDF-Practices: Software Development Practices – This knowledge unit develops the core

concepts relating to modern software development practices. It aims to develop student

understanding and basic competencies in program testing, enhancing the readability of programs,

and using modern methods and tools including some general-purpose IDE.

5. SDF-SEP: Society, Ethics, and the Profession – This knowledge unit aims to develop an initial

understanding of some of the ethical issues related to programming, professional values

programmers need to have, and the responsibility to society that programmers have. This

knowledge unit is a part of the SEP Knowledge Area.

Core Hours

Knowledge Unit CS Core KA Core

Fundamental Programming Concepts

and Practices

20

Fundamental Data Structures 6 + 6 (AL)

Algorithms 3 + 3 (AL)

Software Development Practices 5

Society, Ethics and the Profession Included in SEP hours

Total 43

Note: The CS Core hours include 9 hours shared with AL, but counted here.

Knowledge Units

SDF-Fundamentals: Fundamental Programming Concepts and Practices

CS Core:

1. Basic concepts such as variables, primitive data types, expressions, and their evaluation

169

2. How imperative programs work: state and state transitions on execution of statements, flow of

control

3. Basic constructs such as assignment statements, conditional and iterative statements, basic I/O

4. Key modularity constructs such as functions (and methods and classes, if supported in the

language) and related concepts like parameter passing, scope, abstraction, data encapsulation

(See also: FPL-OOP)

5. Input and output using files and APIs

6. Structured data types available in the chosen programming language like sequences (e.g., arrays,

lists), associative containers (e.g., dictionaries, maps), others (e.g., sets, tuples) and when and how

to use them (See also: AL-Foundational)

7. Libraries and frameworks provided by the language (when/where applicable)

8. Recursion

9. Dealing with runtime errors in programs (e.g., exception handling).

10. Basic concepts of programming errors, testing, and debugging (See also: SE-Construction, SEC-

Coding)

11. Documenting/commenting code at the program and module level.(See also: SE-Construction)

12. Develop a security mindset. (See also: SEC-Foundations)

Illustrative Learning Outcomes:

CS Core:

In these learning outcomes, the term "develop" means "design, write, test, and debug."

1. Develop programs that use the fundamental programming constructs: assignment and expressions,

basic I/O, conditional and iterative statements.

2. Develop programs using functions with parameter passing.

3. Develop programs that effectively use the different structured data types provided in the language

like arrays/lists, dictionaries, and sets.

4. Develop programs that use file I/O to provide data persistence across multiple executions.

5. Develop programs that use language-provided libraries and frameworks (where applicable).

6. Develop programs that use APIs to access or update data (e.g., from the web).

7. Develop programs that create simple classes and instantiate objects of those classes (if supported

by the language).

8. Explain the concept of recursion and identify when and how to use it effectively.

9. Develop recursive functions.

10. Develop programs that can handle runtime errors.

11. Read a given program and explain what it does.

12. Write comments for a program or a module specifying what it does.

13. Trace the flow of control during the execution of a program.

14. Use appropriate terminology to identify elements of a program (e.g., identifier, operator, operand).

SDF-Data-Structures: Fundamental Data Structures

CS Core: (See also: AL-Foundational)

1. Standard abstract data types such as lists, stacks, queues, sets, and maps/dictionaries, including

operations on them.

170

2. Selecting and using appropriate data structures.

3. Performance implications of choice of data structure(s).

4. Strings and string processing.

Illustrative Learning Outcomes:

CS Core:

1. Write programs that use each of the key abstract data types provided in the language (e.g., arrays,

tuples/records/structs, lists, stacks, queues, and associative data types like sets,

dictionaries/maps).

2. Select the appropriate data structure for a given problem.

3. Explain how the performance of a program may change when using different data structures or

operations.

4. Write programs that work with text by using string processing capabilities provided by the language.

SDF-Algorithms: Algorithms

CS Core: (See also: AL-Foundational, AL-Complexity)

1. Concept of algorithm and notion of algorithm efficiency

2. Some common algorithms (e.g., sorting, searching, tree traversal, graph traversal)

3. Impact of algorithms on time-space efficiency of programs

Illustrative Learning Outcomes:

CS Core:

1. Explain the role of algorithms for writing programs.

2. Demonstrate how a problem may be solved by different algorithms, each with different properties.

3. Explain some common algorithms (e.g., sorting, searching, tree traversal, graph traversal).

4. Explain the impact on space/time performance of some algorithms.

SDF-Practices: Software Development Practices

CS Core: (See also: SE-Construction)

1. Basic testing, including test case design

2. Use of a general-purpose IDE, including its debugger

3. Programming style that improves readability

4. Specifying functionality of a module in a natural language.

Illustrative Learning Outcomes:

CS Core:

1. Develop tests for modules and apply a variety of strategies to design test cases.

2. Explain some limitations of testing programs.

3. Build, execute, and debug programs using a modern IDE and associated tools such as visual

debuggers.

171

4. Apply basic programming style guidelines to aid readability of programs such as comments,

indentation, proper naming of variables, etc.

5. Write specifications of a module as module comment describing its functionality.

SDF-SEP: Society, Ethics, and the Profession

CS Core:

1. Intellectual property rights of programmers for programs they develop.

2. Plagiarism and academic integrity.

3. Responsibility and liability of programmers regarding code they develop for solutions. (See also:

SEC-Foundations)

4. Basic professional work ethics of programmers.

Illustrative Learning Outcomes:

CS Core:

1. Explain/understand some of the intellectual property issues relating to programs.

2. Explain/understand when code developed by others can be used and proper ways of disclosing

their use.

3. Explain/understand the responsibility of programmers when developing code for an overall solution

(which may be developed by a team).

4. Explain/understand one or more codes of conduct applicable to programmers.

Professional Dispositions

● Self-Directed: Students must seek out solutions to issues on their own (e.g., using technical

forums, FAQs, discussions). Resolving issues is an important part of becoming proficient in

programming.

● Experimental: Students must experiment with language features to understand them and to quickly

prototype solutions. This helps in learning about programming language features.

● Technical curiosity: Students must develop interest in understanding how programs are executed,

how programs and data are stored in memory, etc. This will help build better mental models of the

underlying execution system on which programs run.

● Adaptable: Students must be willing to learn and use different tools and technologies that facilitate

software development. Tools are commonly used while programming and new tools often emerge –

using tools effectively and learning the use of new tools will help.

● Persistent: Students must continue efforts until, for example, a bug is identified, a program is made

robust and handles all situations, etc. This will help as programming requires effort and ability to

persevere till a program works satisfactorily.

● Meticulous: Students must pay attention to detail and use orderly processes while programming.

The underlying machine is unforgiving and there is no room for even small errors in the programs

as they can cause major failures.

172

Mathematics Requirements

As SDF focuses on the first year and is foundational, it assumes only basic mathematical knowledge

that students acquire in school, in particular Sets, Relations, Functions, and Logic. (See also: MSF-

Discrete)

Course Packaging Suggestions

The SDF KA will generally be covered in introductory courses, often called CS1 and CS2. How much of

the SDF KA can be covered in CS1 and how much is to be left for CS2 is likely to depend on the choice

of programming language for CS1. For languages like Python or Java, CS1 can cover all the

Programming Concepts and Development Methods KAs, and some of the Data Structures KA. It is

desirable that they be further strengthened in CS2. The topics under algorithms KA and some topics

under data structures KA can be covered in CS2. In case CS1 uses a language with fewer in-built data

structures, then much of the Data Structures KA and some aspects of the programming KA may also

need to be covered in CS2. With the former approach, the introductory course in programming can

include the following:

1. SDF-Fundamentals (20 hours)

2. SDF-Data-Structures (12 hours)

3. SDF-Algorithms (6 hours)

4. SDF-Practices (5 hours)

5. SDF-SEP

Prerequisites: High school mathematics, specifically Sets, Relations, Functions, and Logic. (See also:

MSF-Discrete)

Course objectives: At the end of the course, students should be able to:

● Design, code, test, and debug a modest sized program that effectively uses functional

abstraction.

● Select and use the appropriate language-provided data structure for a given problem (like

arrays, tuples/records/structs, lists, stacks, queues, and associative data types like sets,

dictionaries/maps.)

● Design, code, test, and debug a modest-sized object-oriented program using classes and

objects.

● Design, code, test, and debug a modest-sized program that uses language provided libraries

and frameworks (including accessing data from the web through APIs).

● Read and explain given code including tracing the flow of control during execution.

● Write specifications of a program or a module in natural language explaining what it does.

● Build, execute and debug programs using a modern IDE and associated tools such as visual

debuggers.

● Explain the key concepts relating to programming like parameter passing, recursion, runtime

exceptions and exception handling.

173

Committee

Chair: Pankaj Jalote, Chair, IIIT-Delhi, Delhi, India

Members:

● Brett A. Becker, University College Dublin, Dublin, Ireland

● Titus Winters, Google, New York City, NY, USA

● Andrew Luxton-Reilly, University of Auckland, Auckland, New Zealand

● Christian Servin, El Paso Community College, El Paso, TX, USA

● Karen Reid, University of Toronto, Toronto, Canada

● Adrienne Decker, University at Buffalo, Buffalo, NY, USA

174

175

Software Engineering (SE)

Preamble

As far back as the early 1970s, British computer scientist Brian Randell allegedly said, “Software

engineering is the multi-person construction of multi-version programs.” This is an essential insight:

while programming is the skill that governs our ability to write a program, software engineering is

distinct in two dimensions: time and people.

First, a software engineering project is a team endeavor; being a solitary programming expert is

insufficient. Skilled software engineers must demonstrate expertise in communication and collaboration.

Programming may be an individual activity, but software engineering is a collaborative one, deeply tied

to issues of professionalism, teamwork, and communication.

Second, a software engineering project is usually “multi-version.” It has an expected lifespan; it needs

to function properly for months, years, or decades. Features may be added or removed to meet product

requirements. The engineering team itself will likely change. The technological context will shift, as our

computing platforms evolve, programming languages change, dependencies upgrade, etc. This

exposure to matters of time and change is novel when compared to a programming project: it isn’t

enough to build a thing that works, instead it must work and stay working. Many of the most challenging

topics in tech share “time will lead to change” as a root cause: backward compatibility, version skew,

dependency management, schema changes, protocol evolution.

Software engineering presents a particularly difficult challenge for learning in an academic setting.

Given that the major differences between programming and software engineering are time and

teamwork, it is hard to generate lessons that require successful teamwork and that faithfully present the

challenges of time. Additionally, some topics in software engineering will be more authentic and more

relevant if our learners experience collaborative and long-term software engineering projects in vivo

rather than in the classroom. Regardless of whether that happens as an internship, involvement in an

open-source project, or full-time engineering role, a month of full-time hands-on experience has more

available hours than the average software engineering course.

Thus, a software engineering curriculum must focus on concepts needed by most new-graduate hires,

and that either are novel for those who are trained primarily as programmers, or that are abstract

concepts that may not get explicitly stated/shared on the job. Such topics include, but are not limited to:

● Testing

● Teamwork, collaboration

● Communication

● Design

● Maintenance and evolution

● Software engineering tools

Some such material is reasonably suited to a standard lecture or lecture + lab course. Discussing

theoretical underpinnings of version control systems, or branching strategies in such systems, can be

an effective way to familiarize students with those ideas. Similarly, a theoretical discussion can highlight

176

the difference between static and dynamic analysis tools or may motivate discussion of diamond

dependency problems in dependency networks.

On the other hand, many of the fundamental topics of software engineering are best experienced in a

hands-on fashion. Historically, project-oriented courses have been a common vehicle for such learning.

We believe that such experience is valuable but also bears some interesting risks: students may form

erroneous notions about the difficulty/complexity of collaboration if their only exposure is a single

project with teams formed of other novice software engineers. It falls to instructors to decide on the right

balance between theoretical material and hands-on projects – neither is a perfect vehicle for this

challenging material. We strongly encourage instructors of project courses to aim for iteration and fast

feedback – a few simple tasks repeated, as in an Agile-structured project, is better than singular high-

friction introductions to many types of tasks. Projects with real-world industry partners and clients are

also especially encouraged. If long-running project courses are not an option, anything that can expose

learners to the collaborative and long-term aspects of software engineering is valuable – adding

features to an existing codebase, collaborating on distinct parts of a larger whole, pairing up to write an

encoder and decoder, etc.

All evidence suggests that the role of software in our society will continue to grow for the foreseeable

future. Additionally, the era of “two programmers in a garage” seems to have drawn to a close. Most

important software these days is a team effort, building on existing code and leveraging existing

functionality. The study of software engineering skills is a deeply important counterpoint to the everyday

experience of computing students – we must impress on them the reality that few software projects are

managed by writing from scratch as a solo endeavor. Communication, teamwork, planning, testing, and

tooling are far more important as our students move on from the classroom and make their mark on the

wider world.

Although most CS graduates will go on to an industry position that requires this material, the CS Core

topics presented here are of value regardless of whether graduates go on to industry or academia.

Changes since CS 2013

This document shifts the focus of the Software Engineering knowledge area in a few ways compared to

the goals of CS2013. The common reason behind most of these changes is to focus on material that

learners would not pick up elsewhere in the curriculum, and that will be relevant immediately upon

graduation, rather than at some future point in their careers.

● More explicit focus on the software workflow (version control, testing, code review, tooling).

● Less focus on team leadership and project management.

● More focus on team participation, communication, and collaboration.

Overview

1. SE-Teamwork: Because of the nature of learning programming, most students in introductory SE

have little or no exposure to the collaborative nature of SE. Practice (for instance in project work)

may help, but lecture and discussion time spent on the value of clear, effective, and efficient

communication and collaboration is essential for Software Engineering.

177

2. SE-Tools: Industry reliance on SE tools has exploded in the past generation, with version control

becoming ubiquitous, testing frameworks growing in popularity, increased reliance on static and

dynamic analysis in practice, and the near-ubiquitous use of continuous integration systems.

Increasingly powerful IDEs provide code searching and indexing capabilities, as well as small scale

refactoring tools and integration with other SE tools. An understanding of the nature of these tools is

broadly valuable - especially version control systems.

3. SE-Requirements: Knowing how to build something is of little help if we do not know what to build.

Product Requirements (aka Requirements Engineering, Product Design, Product Requirements

solicitation, Product Requirements Documents, etc.) introduces students to the processes

surrounding the specification of the broad requirements governing development of a new product or

feature.

4. SE-Design: While Product Requirements focus on the user-facing functionality of a software

system, Software Design focuses on the engineer-facing design of internal software components.

This encompasses large design concerns such as software architecture, as well as small-scale

design choices like API design.

5. SE-Construction: Software Construction focuses on practices that influence the direct production

of software: use of tests, test driven development, coding style. More advanced topics extend into

secure coding, dependency injection, work prioritization, etc.

6. SE-Validation: Software Verification and Validation focuses on how to improve the value of testing

– understand the role of testing, failure modes, and differences between good tests and poor ones.

7. SE-Refactoring: Refactoring and Code Evolution focuses on refactoring and maintenance

strategies, incorporating code health, use of tools, and backwards compatibility considerations.

8. SE-Reliability: Software Reliability aims to improve understanding of and attention to error cases,

failure modes, redundancy, and reasoning about fault tolerance.

9. SE-Formal: Formal Methods provides mathematically rigorous mechanisms to apply to software,

from specification to verification. (Prerequisites: Substantial dependence on core material from the

Discrete Structures area, particularly knowledge units DS/Basic Logic and DS/Proof Techniques.)

Core Hours

Knowledge Unit CS Core KA Core

Teamwork 2 + 3 (SEP) 2

Tools and Environments 1 3 + 1 (SDF)

Product Requirements 0 + 3 (SEP) 2

Software Design 1 4 + 2 (DM)

Software Construction 1 + 3 (SDF) 3 + 1 (SDF)

Software Verification and Validation 1 3

178

Refactoring and Code Evolution 2

Software Reliability 2

Formal Methods

Total 6 21

Note: We have specifically highlighted Teamwork and Product Requirements as two knowledge units

where SEP lessons are most directly obvious and applicable. Issues like impact on society, interaction

with others, and social power disparities are pervasive in Software Engineering and should be woven

into as many practical lessons as possible.

Knowledge Units

SE-Teamwork: Teamwork

CS Core:

1. Effective communication, including oral and written, as well as formal (email, docs, comments,

presentations) and informal (team chat, meetings). (See also: SEP-Communication)

2. Common causes of team conflict, and approaches for conflict resolution.

3. Cooperative programming:

a. Pair programming or Swarming

b. Code review

c. Collaboration through version control

4. Roles and responsibilities in a software team: (See also: SEP-Professional-Ethics)

a. Advantages of teamwork

b. Risks and complexity of such collaboration

5. Team processes – responsibilities for tasks, effort estimation, meeting structure, work schedule

6. Importance of team diversity and inclusivity. (See also: SEP-Communication)

KA Core:

7. Interfacing with stakeholders, as a team:

a. Management & other non-technical teams

b. Customers

c. Users

8. Risks associated with physical, distributed, hybrid, and virtual teams – including communication,

perception, structure, points of failure, mitigation, and recovery, etc.

Illustrative Learning Outcomes:

CS Core:

1. Follow effective team communication practices.

179

2. Articulate the sources of, hazards of, and potential benefits of team conflict – especially focusing on

the value of disagreeing about ideas or proposals without insulting people.

3. Facilitate a conflict-resolution and problem-solving strategy in a team setting.

4. Collaborate effectively in cooperative development/programming.

5. Propose and delegate necessary roles and responsibilities in a software development team.

6. Compose and follow an agenda for a team meeting.

7. Facilitate through involvement in a team project, the central elements of team building, establishing

healthy team culture, and team management including creating and executing a team work plan.

8. Promote the importance of and benefits that diversity and inclusivity brings to a software

development team.

KA Core:

9. Reference, as a team, the importance of, and strategies to interface with stakeholders outside the

team on both technical and non-technical levels.

10. Enumerate the risks associated with physical, distributed, hybrid, and virtual teams and possible

points of failure and how to mitigate against and recover/learn from failures.

SE-Tools: Tools and Environments

CS Core:

1. Software configuration management and version control: (See also: SDF-Practices)

a. Configuration in version control, reproducible builds/configuration.

b. Version control branching strategies. Development branches vs release branches. Trunk-based

development.

c. Merging/rebasing strategies, when relevant.

KA Core:

2. Release management.

3. Testing tools including static and dynamic analysis tools. (See also: SDF-Practices, SEC-Coding)

4. Software process automation:

a. Build systems – the value of fast, hermetic, reproducible builds, compare/contrast approaches

to building a project.

b. Continuous Integration (CI) – the use of automation and automated tests to do preliminary

validation that the current head/trunk revision builds and passes (basic) tests.

c. Dependency management – updating external/upstream dependencies, package management,

SemVer.

5. Design and communication tools (docs, diagrams, common forms of design diagrams like UML).

6. Tool integration concepts and mechanisms. (See also: SDF-Practices)

7. Use of modern IDE facilities – debugging, refactoring, searching/indexing, ML-powered code

assistants, etc. (See also: SDF-Practices)

Illustrative Learning Outcomes:

CS Core:

1. Describe the difference between centralized and distributed software configuration management.

2. Describe how version control can be used to help manage software release management.

180

3. Identify configuration items and use a source code control tool in a small team-based project.

KA Core:

4. Describe how available static and dynamic test tools can be integrated into the software

development environment.

5. Understand the use of CI systems as a ground-truth for the state of the team’s shared code (build

and test success).

6. Describe the issues that are important in selecting a set of tools for the development of a specific

software system, including tools for requirements tracking, design modeling, implementation, build

automation, and testing.

7. Demonstrate the capability to use software tools in support of the development of a software

product of medium size.

SE-Requirements: Product Requirements

KA Core:

1. Describe functional requirements using, for example, use cases or user stories.

a. Using at least one method of documenting and structuring functional requirements.

b. Understanding how the method supports design and implementation.

c. Strengths and weaknesses of using a specific approach.

2. Properties of requirements including consistency, validity, completeness, and feasibility.

3. Requirements elicitation.

a. Sources of requirements, for example, users, administrators, or support personnel.

b. Methods of requirement gathering, for example, surveys, interviews, or behavioral analysis.

4. Non-functional requirements, for example, security, usability, or performance, also called as Quality

Attributes. (See also: SEP-Sustainability)

5. Risk identification and management, including ethical considerations surrounding the proposed

product. (See also: SEP-Professional-Ethics)

6. Communicating and/or formalizing requirement specifications.

Non-core:

7. Prototyping a tool for both eliciting and validating/confirming requirements.

8. Product evolution: when requirements change, how to understand what effect that has and what

changes need to be made.

9. Effort estimation:

a. Learning techniques for better estimating the effort required to complete a task;

b. Practicing estimation and comparing it to how long tasks take;

c. Effort estimation is quite difficult, so students are likely to be way off in many cases, but seeing

the process play out with their own work is valuable.

Illustrative Learning Outcomes:

KA Core:

1. Compare different methods of eliciting requirements along multiple axes.

2. Identify differences between two methods of describing functional requirements (e.g., customer

interviews, user studies) and the situations where each would be preferred.

181

3. Identify which behaviors are required, allowed, or barred from a given set of requirements and a list

of candidate behaviors.

4. Collect a set of requirements for a simple software system.

5. Identify areas of a software system that need to be changed, given a description of the system and

a set of new requirements to be implemented.

6. Identify the functional and non-functional requirements in a set of requirements.

Non-core:

7. Create a prototype of a software system to validate a set of requirements – building a mock-up,

MVP, etc.

8. Estimate the time to complete a set of tasks, then compare estimates to the actual time taken.

9. Determine an implementation sequence for a set of tasks, adhering to dependencies between

them, with a goal to retire risk as early as possible.

10. Write a requirement specification for a simple software system.

SE-Design: Software Design

CS Core:

1. System design principles. (See also: SF-Reliability)

a. Levels of abstraction (e.g., architectural design and detailed design)

b. Separation of concerns

c. Information hiding

d. Coupling and cohesion

2. Software architecture. (See also: SF-Reliability)

a. Design paradigms

i. Top-down functional decomposition/layered design

ii. Data-oriented architecture

iii. Object-oriented analysis and design

iv. Event-driven design

b. Standard architectures (e.g., client-server and microservice architectures including REST

discussions, n-layer, pipes-and-filters, Model View Controller)

c. Identifying component boundaries and dependencies

3. Programming in the large vs programming in the small. (See also: SF-Reliability)

4. Code smells and other indications of code quality, distinct from correctness. (See also: SEC-

Engineering)

KA Core:

5. API design principles

a. Consistency

i. Consistent APIs are easier to learn and less error-prone

ii. Consistency is both internal (between different portions of the API) and external (following

common API patterns)

b. Composability

c. Documenting contracts

182

i. API operations should describe their effect on the system, but not generally their

implementation

ii. Preconditions, postconditions, and invariants

d. Expandability

e. Error reporting

i. Errors should be clear, predictable, and actionable

ii. Input that does not match the contract should produce an error

iii. Errors that can be reliably managed without reporting should be managed

6. Identifying and codifying data invariants and time invariants

7. Structural and behavioral models of software designs

8. Data design (See also: DM-Modeling)

a. Data structures

b. Storage systems

9. Requirement traceability

a. Understanding which requirements are satisfied by a design

Non-Core:

10. Design modeling, for instance with class diagrams, entity relationship diagrams, or sequence

diagrams

11. Measurement and analysis of design quality

12. Principles of secure design and coding (See also: SEC-Engineering)

a. Principle of least privilege

b. Principle of fail-safe defaults

c. Principle of psychological acceptability

13. Evaluating design tradeoffs (e.g., efficiency vs reliability, security vs usability)

Illustrative Learning Outcomes:

CS Core:

1. Identify the standard software architecture of a given high-level design.

2. Select and use an appropriate design paradigm to design a simple software system and explain

how system design principles have been applied in this design.

3. Adapt a flawed system design to better follow principles such as separation of concerns or

information hiding.

4. Identify the dependencies among a set of software components in an architectural design.

KA Core:

5. Design an API for a single component of a large software system, including identifying and

documenting each operation’s invariants, contract, and error conditions.

6. Evaluate an API description in terms of consistency, composability, and expandability.

7. Expand an existing design to include a new piece of functionality.

8. Design a set of data structures to implement a provided API surface.

9. Identify which requirements are satisfied by a provided software design.

Non-Core:

10. Translate a natural language software design into class diagrams.

183

11. Adapt a flawed system design to better follow the principles of least privilege and fail-safe defaults.

12. Contrast two software designs across different qualities, such as efficiency or usability.

SE-Construction: Software Construction

CS Core:

1. Practical small-scale testing (See also: SDF-Practices)

a. Unit testing

b. Test-driven development – This is particularly valuable for students psychologically, as it is far

easier to engage constructively with the challenge of identifying challenging inputs for a given

API (edge cases, corner cases) a priori. If they implement first, the instinct is often to avoid

trying to crash their new creation, while a test-first approach gives them the intellectual

satisfaction of spotting the problem cases and then watching as more tests pass during the

development process.

2. Documentation (See also: SDF-Practices)

a. Interface documentation – describe interface requirements, potentially including (formal or

informal) contracts, pre and post conditions, invariants.

b. Implementation documentation should focus on tricky and non-obvious pieces of code, whether

because the code is using advanced language features, or the behavior of the code is complex.

(Do not add comments that re-state common/obvious operations and simple language features.)

i. Clarify dataflow, computation, etc., focusing on what the code is.

ii. Identify subtle/tricky pieces of code and refactor to be self-explanatory if possible or provide

appropriate comments to clarify.

KA Core:

3. Coding style (See also: SDF-Practices)

a. Style guides

b. Commenting

c. Naming

4. “Best Practices” for coding: techniques, idioms/patterns, mechanisms for building quality programs

(See also: SEC-Coding, SDF-Practices)

a. Defensive coding practices

b. Secure coding practices and principles

c. Using exception handling mechanisms to make programs more robust, fault-tolerant

5. Debugging (See also: SDF-Practices)

6. Logging

7. Use of libraries and frameworks developed by others (See also: SDF-Practices)

Non-Core:

8. Larger-scale testing

a. Test doubles (stubs, mocks, fakes)

b. Dependency injection

9. Work sequencing, including dependency identification, milestones, and risk retirement

a. Dependency identification: Identifying the dependencies between different tasks

b. Milestones: A collection of tasks that serve as a marker of progress when completed. Ideally,

the milestone encompasses a useful unit of functionality.

184

c. Risk retirement: Identifying what elements of a project are risky and prioritizing completing tasks

that address those risks.

10. Potential security problems in programs (See also: SEC-Coding)

a. Buffer and other types of overflows

b. Race conditions

c. Improper initialization, including choice of privileges

d. Input validation

11. Documentation (autogenerated)

12. Development context: “green field” vs existing code base

a. Change impact analysis

b. Change actualization

13. Release management

14. DevOps practices

Illustrative Learning Outcomes:

CS Core:

1. Write appropriate unit tests for a small component (several functions, a single type, etc.).

2. Write appropriate interface and (if needed) implementation comments for a small component.

KA Core:

3. Describe techniques, coding idioms and mechanisms for implementing designs to achieve desired

properties such as reliability, efficiency, and robustness.

4. Write robust code using exception handling mechanisms.

5. Describe secure coding and defensive coding practices.

6. Select and use a defined coding standard in a small software project.

7. Compare and contrast integration strategies including top-down, bottom-up, and sandwich

integration.

8. Describe the process of analyzing and implementing changes to code base developed for a specific

project.

9. Describe the process of analyzing and implementing changes to a large existing code base.

Non-Core:

10. Rewrite a simple program to remove common vulnerabilities, such as buffer overflows, integer

overflows and race conditions.

11. Write a software component that performs some non-trivial task and is resilient to input and run-

time errors.

SE-Validation: Software Verification and Validation

CS Core:

1. Verification and validation concepts

a. Verification: Are we building the thing right?

b. Validation: Did we build the right thing?

2. Why testing matters: Does the component remain functional as the code evolves?

3. Testing objectives

185

a. Usability

b. Reliability

c. Conformance to specification

d. Performance

e. Security

4. Test kinds

a. Unit

b. Integration

c. Validation

d. System

5. Stylistic differences between tests and production code: DAMP vs DRY – more duplication is

warranted in test code.

 KA Core:

6. Test planning and generation

a. Test case generation, from formal models, specifications, etc.

b. Test coverage

i. Test matrices

ii. Code coverage – how much of the code is tested?

iii. Environment coverage – how many hardware architectures, operating systems, browsers,

etc. are tested?

c. Test data and inputs

7. Test development

a. Test-driven development

b. Object oriented testing, mocking, and dependency injection

c. Opaque-box (previously, black-box) and transparent-box (previously, white-box) testing

techniques

d. Test tooling, including code coverage, static analysis, and fuzzing

8. Verification and validation in the development cycle

a. Code reviews

b. Test automation, including automation of tooling

c. Pre-commit and post-commit testing

d. Tradeoffs between test coverage and throughput/latency of testing

e. Defect tracking and prioritization: reproducibility of reported defects

9. Domain specific verification and validation challenges

a. Performance testing and benchmarking

b. Asynchrony, parallelism, and concurrency

c. Safety-critical

d. Numeric

Non-Core:

10. Verification and validation tooling and automation

a. Static analysis

b. Code coverage

c. Fuzzing

186

d. Dynamic analysis and fault containment (sanitizers, etc.)

e. Fault logging and fault tracking

11. Test planning and generation

a. Fault estimation and testing termination including defect seeding

b. Use of random and pseudo random numbers in testing

12. Performance testing and benchmarking

a. Throughput and latency

b. Degradation under load (stress testing, FIFO vs LIFO handling of requests)

c. Speedup and scaling

i. Amdahl’s law

ii. Gustafson's law

iii. Soft and weak scaling

d. Identifying and measuring figures of merits

e. Common performance bottlenecks

i. Compute-bound

ii. Memory-bandwidth bound

iii. Latency-bound

f. Statistical methods and best practices for benchmarking

i. Estimation of uncertainty

ii. Confidence intervals

g. Analysis and presentation (graphs, etc.)

h. Timing techniques

13. Testing asynchronous, parallel, and concurrent systems

14. Verification and validation of non-code artifacts (documentation, training materials)

Illustrative Learning Outcomes:

CS Core:

1. Explain why testing is important.

2. Distinguish between program validation and verification.

3. Describe different objectives of testing.

4. Compare and contrast the different types and levels of testing (regression, unit, integration,

systems, and acceptance).

KA Core:

5. Describe techniques for creating a test plan and generating test cases.

6. Create a test plan for a medium-size code segment which includes a test matrix and generation of

test data and inputs.

7. Implement a test plan for a medium-size code segment.

8. Identify the fundamental principles of test-driven development methods and explain the role of

automated testing in these methods.

9. Discuss issues involving the testing of object-oriented software.

10. Describe mocking and dependency injection and their application.

11. Undertake, as part of a team activity, a code review of a medium-size code segment.

12. Describe the role that tools can play in the validation of software.

13. Automate the testing in a small software project.

187

14. Explain the roles, pros, and cons of pre-commit and post-commit testing.

15. Discuss the tradeoffs between test coverage and test throughput/latency and how this can impact

verification.

16. Use a defect tracking tool to manage software defects in a small software project.

17. Discuss the limitations of testing in certain domains.

Non-Core:

18. Describe and compare different tools for verification and validation.

19. Automate the use of different tools in a small software project.

20. Explain how and when random numbers should be used in testing.

21. Describe approaches for fault estimation.

22. Estimate the number of faults in a small software application based on fault density and fault

seeding.

23. Describe throughput and latency and provide examples of each.

24. Explain speedup and the different forms of scaling and how they are computed.

25. Describe common performance bottlenecks.

26. Describe statistical methods and best practices for benchmarking software.

27. Explain techniques for and challenges with measuring time when constructing a benchmark.

28. Identify the figures of merit, construct and run a benchmark, and statistically analyze and visualize

the results for a small software project.

29. Describe techniques and issues with testing asynchronous, concurrent, and parallel software.

30. Create a test plan for a medium-size code segment which contains asynchronous, concurrent,

and/or parallel code, including a test matrix and generation of test data and inputs.

31. Describe techniques for the verification and validation of non-code artifacts.

SE-Refactoring: Refactoring and Code Evolution

KA Core:

1. Hyrum’s Law/The Law of Implicit Interfaces

2. Backward compatibility

a. Compatibility is not a property of a single entity, it’s a property of a relationship.

b. Backward compatibility needs to be evaluated in terms of provider + consumer(s) or with a well-

specified model of what forms of compatibility a provider aspires to/promises.

3. Refactoring

a. Standard refactoring patterns (rename, inline, outline, etc.)

b. Use of refactoring tools in IDE

c. Application of static-analysis tools (to identify code in need of refactoring, generate changes,

etc.)

d. Value of refactoring as a remedy for technical debt

4. Versioning

a. Semantic Versioning (SemVer)

b. Trunk-based development

Non-Core:

188

5. “Large Scale” Refactoring – techniques when a refactoring change is too large to commit safely

(large projects), or when it is impossible to synchronize change between provider + all consumers

(multiple repositories, consumers with private code).

a. Express both old and new APIs so that they can co-exist.

b. Minimize the size of behavior changes.

c. Why these techniques are required, (e.g., “API consumers I can see” vs “consumers I can’t

see”).

Illustrative Learning Outcomes:

KA-Core:

1. Identify both explicit and implicit behavior of an interface and identify potential risks from Hyrum’s

Law.

2. Consider inputs from static analysis tools and/or Software Design principles to identify code in need

of refactoring.

3. Identify changes that can be broadly considered “backward compatible,” potentially with explicit

statements about what usage is or is not supported.

4. Refactor the implementation of an interface to improve design, clarity, etc. with minimal/zero impact

on existing users.

5. Evaluate whether a proposed change is sufficiently safe given the versioning methodology in use

for a given project.

Non-Core:

6. Plan a complex multi-step refactoring to change default behavior of an API safely.

SE-Reliability: Software Reliability

KA Core:

1. Concept of reliability as probability of failure or mean time between failures, and faults as cause of

failures

2. Identifying reliability requirements for different kinds of software

3. Software failures caused by defects/bugs, and so for high reliability the goal is to have minimum

defects – by injecting fewer defects (better training, education, planning), and by removing most of

the injected defects (testing, code review, etc.)

4. Software reliability, system reliability and failure behavior

5. Defect injection and removal cycle, and different approaches for defect removal

6. Compare the “error budget” approach to reliability with the “error-free” approach and identify

domains where each is relevant.

Non-Core:

7. Software reliability models

8. Software fault tolerance techniques and models

a. Contextual differences in fault tolerance (e.g., crashing a flight critical system is strongly

avoided, crashing a data processing system before corrupt data is written to storage is highly

valuable)

189

9. Software reliability engineering practices – including reviews, testing, practical model checking

10. Identification of dependent and independent failure domains, and their impact on system reliability

11. Measurement-based analysis of software reliability – telemetry, monitoring and alerting,

dashboards, release qualification metrics, etc.

Illustrative Learning Outcomes:

KA Core:

1. Describe how to determine the level of reliability required by a software system.

2. Explain the problems that exist in achieving very high levels of reliability.

3. Understand approaches to minimizing faults that can be applied at each stage of the software

lifecycle.

Non-Core:

4. Demonstrate the ability to apply multiple methods to develop reliability estimates for a software

system.

5. Identify methods that will lead to the realization of a software architecture that achieves a specified

level of reliability.

6. Identify ways to apply redundancy to achieve fault tolerance.

7. Identify single-point-of-failure (SPF) dependencies in a system design.

SE-Formal: Formal Methods

Non-Core:

1. Formal specification of interfaces

a. Specification of pre- and post- conditions

b. Formal languages for writing and analyzing pre- and post-conditions.

2. Problem areas well served by formal methods

a. Lock-free programming, data races

b. Asynchronous and distributed systems, deadlock, livelock, etc.

3. Comparison to other tools and techniques for defect detection

a. Testing

b. Fuzzing

4. Formal approaches to software modeling and analysis

a. Model checkers

b. Model finders

Illustrative Learning Outcomes:

1. Describe the role formal specification and analysis techniques can play in the development of

complex software and compare their use as validation and verification techniques with testing.

2. Apply formal specification and analysis techniques to software designs and programs with low

complexity.

3. Explain the potential benefits and drawbacks of using formal specification languages.

190

Professional Dispositions

● Collaborative: Software engineering is increasingly described as a “team sport” – successful

software engineers are able to work with others effectively. Humility, respect, and trust underpin

the collaborative relationships that are essential to success in this field.

● Professional: Software engineering produces technology that has the chance to influence

literally billions of people. Awareness of our role in society, strong ethical behavior, and

commitment to respectful day-to-day behavior outside of one’s team are essential.

● Communicative: No single software engineer on a project is likely to know all the project

details. Successful software projects depend on engineers communicating clearly and regularly

to coordinate effectively.

● Meticulous: Software engineering requires attention to detail and consistent behavior from

everyone on the team. Success in this field is clearly influenced by a meticulous approach -

comprehensive understanding, proper procedures, and a solid avoidance of cutting corners.

● Responsible: The collaborative aspects of software engineering also highlight the value of

being responsible. Failing to take responsibility, failing to follow through, and failing to keep

others informed are all classic causes of team friction and bad project outcomes.

Mathematics Requirements

Desirable:

● Introductory statistics (performance comparisons, evaluating experiments, interpreting survey

results, etc.). (See also CS-Core requirements for MSF-Statistics)

Course Packaging Suggestions

Advanced Course to include at least the following:

● SE-Teamwork (4 hours)

● SE-Tools (4 hours)

● SE-Requirements (2 hours)

● SE-Design (5 hours)

● SE-Construction (4 hours)

● SE-Validation (4 hours)

● SE-Refactoring (2 hours)

● SE-Reliability (2 hours)

● SEP-Professional-Ethics (7 hours)

Prerequisites:

● SDF-Fundamentals

Course objectives: Students should be able to perform good quality code review for colleagues

(especially focusing on professional communication and teamwork needs), read and write unit tests,

191

use basic software tools (IDEs, version control, static analysis tools) and perform basic activities

expected of a new hire on a software team.

Committee

Chair: Titus Winters, Google, New York City, NY, USA

Members:

● Brett A. Becker, University College Dublin, Dublin, Ireland

● Adam Vartanian, Cord, London, UK

● Bryce Adelstein Lelbach, NVIDIA, New York City, NY, USA

● Patrick Servello, CIWRO, Norman, OK, USA

● Pankaj Jalote, IIIT-Delhi, Delhi, India

● Christian Servin, El Paso Community College, El Paso, TX, USA

Contributors:

● Hyrum Wright, Google, Pittsburgh, PA, USA

● Olivier Giroux, Apple, Cupertino, CA, USA

● Gennadiy Civil, Google, New York City, NY, USA

192

193

Security (SEC)

Preamble

Computing supports nearly every facet of modern critical infrastructure: transportation, communication,

healthcare, education, energy generation and distribution, to name a few. With rampant attacks on and

breaches of this infrastructure, computer science graduates have an important role in designing,

implementing, and operating software systems that are robust, safe, and secure.

The Security (SEC) knowledge area focuses on developing a security mindset into the overall ethos of

computer science graduates so that security is embedded in all their work products. Computer science

students need to learn about system vulnerabilities and understand threats against computer systems.

The Security title choice was intentional to serve as a one-word umbrella term for this knowledge area,

which also includes concepts to support privacy, cryptography, secure systems, secure data, and

secure code.

The SEC knowledge area relies on shared concepts pervasive in all the other areas of CS2023. It

identifies seven crosscutting concepts of cybersecurity: confidentiality, integrity, availability, risk

assessment, systems thinking, adversarial thinking, and human-centered thinking. The seventh

concept, human-centered thinking, is additional to the six crosscutting concepts originally defined in the

Cybersecurity Curricula 2017 (CSEC2017) [1]. This addition reinforces to students that humans are

also a link in the overall chain of security, a theme that is also covered in knowledge areas such as

HCI. Principles of protecting systems (also in the DM, OS, SDF, SE and SF knowledge areas) include

security-by-design, privacy-by-design, defense-in-depth, and zero-trust.

Another concept is the notion of assurance, which is an attestation that security mechanisms need to

comply with the security policies that have been defined for data, processes, and systems. Assurance

is tied in with the concepts of verification and validation in the SE knowledge area. Considerations of

data privacy and security are shared with the DM (technical aspects) and SEP knowledge areas.

The SEC knowledge area thus sits atop several of the other CS2023 knowledge areas, while including

additional concepts that are not present in those knowledge areas. The specific dependence on other

knowledge areas is stated below, starting with the Core Hours table. CS2023 treats security as a

crucial component of the skillset of any CS graduate, and the hours needed for security preparation

come from all the other 16 CS2023 knowledge areas.

Changes since CS2013

The Security knowledge area is an updated name for CS2013’s Information Assurance and Security

(IAS) knowledge area. Since 2013, Information Assurance and Security has been rebranded as

Cybersecurity, which has become a new computing discipline, with its own curricular guidelines (CSEC

2017) developed by a Joint Task Force of the ACM, IEEE Computer Society, AIS and IFIP in 2017.

194

Moreover, since 2013, other curricular recommendations for cybersecurity beyond CS2013 and CSEC

2017 have been made. In the US, the National Security Agency recognizes institutions as Centers of

Academic Excellence (CAE) in Cyber Defense and/or Cyber Operations if their cybersecurity programs

meet the respective CAE curriculum requirements. Additionally, the National Initiative for Cybersecurity

Education (NICE) of the US National Institute for Standards and Technologies (NIST) has developed

and revised the Workforce Framework for Cybersecurity (NICE Workforce Framework), which identifies

competencies (knowledge and skills) needed to perform tasks relevant to cybersecurity work roles. The

European Cybersecurity Skills Framework (ECSF) includes a standard ontology to describe

cybersecurity tasks and roles, as well as addressing the cybersecurity personnel shortage in EU

member countries. Similarities and differences of these cybersecurity guidelines, viewed from the CS

perspective, also informed the SEC knowledge area.

Building on CS2013’s recognition of the pervasiveness of security in computer science, the CS2023

SEC knowledge area focuses on ensuring that students develop a security mindset so that they are

prepared for the continual changes occurring in computing. One useful addition is the knowledge unit

for security analysis, design, and engineering to support the concepts of security-by-design and

privacy-by-design.

The importance of computer science in ensuring the protection of future computing systems and

societal critical infrastructure will continue to grow. Consequently, it is imperative that faculty teaching

computer science incorporate the latest advances in security and privacy approaches to keep their

curriculum current.

Differences between CS2023 Security knowledge area and Cybersecurity

CS2023’s SEC knowledge area focuses on those aspects of security, privacy, and related concepts

important for computer science students. In comparison, CSEC 2017 characterizes similarities and

differences in the cybersecurity book of knowledge using the disciplinary lenses of computer science,

computer engineering, software engineering, information systems, information technology, and other

disciplines. In short, the major goal of the SEC knowledge area is to ensure that computer science

graduates can design and develop more secure code, ensure data security and privacy, and apply a

security mindset to their daily activities.

Protecting what happens within the perimeter of a networked computer system is a core competency of

computer science graduates. Although the computer science and cybersecurity knowledge units

overlap, the demands upon cybersecurity graduates typically are to protect the perimeter. CSEC 2017

defines cybersecurity as a highly interdisciplinary field of study that covers eight areas (data, software,

component, connection, system, human, organizational, and societal security) and prepares its

students for both technical and managerial roles in cybersecurity.

The first five CSEC 2017 areas are technical and have overlaps with the CS2023 SEC knowledge area,

but the intent of coverage is substantively different as computer science students bring to bear the core

competencies described in all the 17 CS2023 knowledge areas. For instance, consider the SEC

knowledge area’s Secure Coding knowledge unit. The computer science student will need to view this

knowledge unit from a computer science lens, as an extension of the material covered in the SDF, SE,

195

and PDC knowledge areas, while the Cybersecurity student will need to view software security in the

overall context of diverse cybersecurity goals. These viewpoints are not totally distinct and have

overlaps, but the lenses used to examine and present the content are different. There are similar

commonalities and differences among CS2023 SEC knowledge units and corresponding CSEC 2017

knowledge units.

Core Hours

Knowledge Unit CS Core KA Core

Foundational Security 1 + 7 (DM, FPL, PDC, SDF,

SE, OS)

7

Society, Ethics, and the Profession 1 + 4 (SEP) 2

Secure Coding 2 + 6 (FPL, SDF, SE) 5

Cryptography 1 + 8 (MSF) 4

Security Analysis, Design, and Engineering 1 + 4 (MSF, SE) 8

Digital Forensics 0 6

Security Governance 0 3

Total hours 6 35

The SEC knowledge area requires approximately 28 hours of CS Core hours from the other knowledge

areas, either to provide the basis or to complement its content. Of these, MSF-Discrete, MSF-

Probability, and MSF-Statistics are likely to be relied upon extensively in all the SEC knowledge units,

as are SDF-Fundamentals, SDF-Algorithms, and SDF-Practices. The others are mentioned within each

of the SEC knowledge units described below.

Knowledge Units

SEC-Foundations: Foundational Security

CS Core:

1. Developing a security mindset incorporating crosscutting concepts: confidentiality, integrity,

availability, risk assessment, systems thinking, adversarial thinking, human-centered thinking

2. Basic concepts of authentication and authorization/access control

3. Vulnerabilities, threats, attack surfaces, and attack vectors (See also: OS-Protection)

F

i

g

u

r

e

.

D

a

t

a

S

e

c

u

r

i

t

y

–

C

y

b

e

r

s

e

c

u

r

i

t

y

v

e

r

s

u

s

C

S

2

0

2

3

S

E

C

.

(

O

t

h

e

r

k

n

o

w

l

e

F

i

g

u

r

e

.

D

a

t

a

S

e

c

u

r

i

t

y

–

C

y

b

e

r

s

e

c

u

r

i

t

y

v

e

r

s

u

s

C

S

2

0

2

3

S

E

C

.

(

O

t

h

e

196

4. Denial of Service (DoS) and Distributed Denial of Service (DDoS) (See also: OS-Protection)

5. Principles and practices of protection, e.g., least privilege, open design, fail-safe defaults, defense

in depth, and zero trust; and how they can be implemented (See also: OS-Principles, OS-

Protection, SE-Construction, SEP-Security)

6. Optimization considerations between security, privacy, performance, and other design goals (See

also: SDF-Practices, SE-Validation, HCI-Design)

7. Impact of AI on security and privacy: using AI to bolster defenses as well as address increased

adversarial capabilities due to AI (See also: AI-SEP, HCI-Design, HCI-SEP)

KA Core:

8. Access control models (e.g., discretionary, mandatory, role-based, and attribute-based)

9. Security controls

10. Concepts of trust and trustworthiness

11. Applications of a security mindset: web, cloud, and mobile devices (See also: SF-System Design,

SPD-Common)

12. Protecting embedded and cyber-physical systems (See also: SPD-Embedded)

13. Principles of usable security and human-centered computing (See also: HCI-Design, SEP-Security)

14. Security and trust in AI/machine learning systems, e.g., fit for purpose, ethical operating

boundaries, authoritative knowledge sources, verified training data, repeatable system evaluation

tests, system attestation, independent validation/certification; unintended consequences from:

adverse effect (See also: AI-Introduction, AI-ML, AI-SEP, SEP-Security)

15. Security risks in building and operating AI/machine learning systems (e.g., algorithm bias,

knowledge corpus bias, training corpus bias, copyright violation) (See also: AI-Introduction, AI-ML,

AI-SEP)

16. Hardware considerations in security, e.g., principles of secure hardware, secure processor

architectures, cryptographic acceleration, compartmentalization, software-hardware interaction (See

also: AR-Assembly, AR-Representation, OS-Purpose)

Illustrative Learning Outcomes:

CS Core:

1. Evaluate a system for possible attacks that can be launched by an adversary.

2. Design and develop approaches to protect a system from a set of identified threats.

KA Core:

3. Describe how harm to user privacy can be avoided.

4. Develop a system that incorporates various principles of security and privacy.

5. Compare the different access control models in terms of functionality and performance.

6. Show how an adversary could use machine learning algorithms to reduce the security of a system.

7. Show how a developer could improve the security of a system using machine learning algorithms.

8. Describe hardware (especially CPU) vulnerabilities that can impact software.

SEC-SEP: Society, Ethics, and the Profession

CS Core:

1. Principles and practices of privacy (See also: SEP-Security)

2. Societal impacts on breakdowns in security and privacy (See also: SEP-Context, SEP-Privacy,

SEP-Security)

197

3. Applicability of laws and regulations on security and privacy (See also: SEP-Security)

4. Professional ethical considerations when designing secure systems and maintaining privacy; ethical

hacking (See also: SEP-Professional-Ethics, SEP-Privacy, SEP-Security)

KA-Core:

5. Security by design (See also: SF-Security, SF-Design)

6. Privacy by design and privacy engineering (See also: SEP-Privacy, SEP-Security)

7. Security and privacy implications of malicious AI/machine learning actors, e.g., identifying deep

fakes (See also: AI-Introduction, AI-ML, SEP-Privacy, SEP-Security)

8. Societal impacts of Internet of Things (IoT) devices and other emerging technologies on security

and privacy (See also: SEP-Privacy, SEP-Security)

Illustrative Learning Outcomes:

CS Core:

1. Calculate the impact of a breakdown in security of a given system.

2. Construct a system that conforms to security laws.

3. Apply a set of privacy regulations to design a system that protects privacy.

KA Core:

4. Evaluate the legal ramifications of a system not corresponding to applicable laws and regulations.

5. Construct a system that is designed to avoid harm to user privacy.

SEC-Coding: Secure Coding

CS Core:

1. Common vulnerabilities and weaknesses

2. SQL injection and other injection attacks

3. Cross-site scripting techniques and mitigations

4. Input validation and data sanitization (See also: OS-Protection, SDF-Fundamentals, SE-Validation)

5. Type safety and type-safe languages (See also: FPL-Types, FPL-Systems, OS-Protection, SDF-

Fundamentals, SE-Validation)

6. Buffer overflows, stack smashing, and integer overflows (See also: AR-Assembly, FPL-Systems,

OS-Protection)

7. Security issues due to race conditions (See also: FPL-Parallel, PDC-Evaluation)

KA Core:

8. Principles of noninterference and nondeducibility

9. Preventing information flow attacks

10. Offensive security techniques as a defense

11. AI-assisted malware detection techniques

12. Ransomware: creation, prevention, and mitigation

13. Secure use of third-party components (See also: SE-Construction, SE-Validation)

14. Malware: varieties, creation, reverse engineering, and defense against them (See also: FPL-

Systems, FPL-Translation)

15. Assurance: testing (including fuzzing and penetration testing), verification, and validation (See also:

OS-Protection, SDF-Fundamentals, SE-Construction, SE-Validation)

198

16. Static and dynamic analyses (See also: FPL-Analysis, MSF-Protection, PDC-Evaluation, SE-

Validation)

17. Secure compilers and secure code generation (See also: FPL-Runtime, FPL-Translation)

Illustrative Learning Outcomes:

CS Core:

1. Identify underlying problems in given examples of an enumeration of common weaknesses and

explain how they can be circumvented.

2. Apply input validation and data sanitization techniques to enhance security of a program.

3. Describe how the selection of a programming language can impact the security of the system being

constructed.

4. Rewrite a program in a type-safe language (e.g., Java or Rust) originally written in an unsafe

programming language (e.g., C/C++).

5. Evaluate a program for possible buffer overflow attacks and rewrite to prevent such attacks.

6. Evaluate a set of related programs for possible race conditions and prevent an adversary from

exploiting them.

7. Evaluate and prevent SQL injections attacks on a database application.

8. Evaluate and prevent cross-site scripting attacks against a website.

KA Core:

9. Describe different kinds of malicious software.

10. Construct a program that tests for all input handling errors.

11. Explain the risks of misusing interfaces with third-party code and how to correctly use third-party

code.

12. Discuss the need to update software to fix security vulnerabilities and the lifecycle management of

the fix.

13. Construct a system that is protected from unauthorized information flows.

14. Apply static and dynamic tools to identify programming faults.

15. Evaluate a system for the existence of malware and remove it.

16. Implement preventive techniques to reduce the occurrence of ransomware.

SEC-Crypto: Cryptography

CS Core:

1. Differences between algorithmic, applied, and mathematical views of cryptography

2. Mathematical preliminaries: modular arithmetic, Euclidean algorithm, probabilistic independence,

linear algebra basics, number theory, finite fields, complexity, asymptotic analysis (See also: MSF-

Discrete, MSF-Linear)

3. Basic cryptography: symmetric key and public key cryptography (See also: AL-Foundational, MSF-

Discrete)

4. Basic cryptographic building blocks, including symmetric encryption, asymmetric encryption,

hashing, and message authentication (See also: MSF-Discrete)

5. Classical cryptosystems, such as shift, substitution, transposition ciphers, code books, and

machines (See also: MSF-Discrete)

6. Kerckhoff’s principle and use of vetted libraries (See also: SE-Construction)

199

7. Usage of cryptography in real-world applications, e.g., electronic cash, secure channels between

clients and servers, secure electronic mail, entity authentication, device pairing, steganography, and

voting systems (See also: NC-Security, GIT-Image)

KA Core:

8. Additional mathematics: primality, factoring, and elliptic curve cryptography (See also: MSF-

Discrete)

9. Private-key cryptosystems: substitution-permutation networks, linear cryptanalysis, differential

cryptanalysis, DES, and AES (See also: MSF-Discrete, NC-Security)

10. Public-key cryptosystems: Diffie-Hellman and RSA (See also: MSF-Discrete)

11. Data integrity and authentication: hashing, and digital signatures (See also: MSF-Discrete, DM-

Security)

12. Cryptographic protocols: challenge-response authentication, zero-knowledge protocols,

commitment, oblivious transfer, secure two- or multi-party computation, hash functions, secret

sharing, and applications (See also: MSF-Discrete)

13. Attacker capabilities: chosen-message attack (for signatures), birthday attacks, side channel

attacks, and fault injection attacks (See also: NC-Security)

14. Quantum cryptography; Post Quantum/Quantum resistant cryptography (See also: AL-

Foundational, MSF-Discrete)

15. Blockchain and cryptocurrencies (See also: MSF-Discrete, PDF-Communication)

Illustrative Learning Outcomes:

CS Core:

1. Explain the role of cryptography in supporting security and privacy.

2. Discuss the risks of inventing one’s own cryptographic methods.

3. Discuss the importance of prime numbers in cryptography and explain their use in cryptographic

algorithms.

4. Implement and cryptanalyze classical ciphers.

KA Core:

5. Describe how crypto keys can be managed securely.

6. Compare the space and time performance of a given set of cryptographic methods.

7. Discuss how modern private-key cryptosystems work and ways to cryptanalyze them.

8. Discuss how modern public-key cryptosystems work and ways to cryptanalyze them.

9. Compare different cryptographic algorithms in terms of security.

10. Explain key exchange protocols and show approaches to reduce their failure.

11. Describe real-world applications of cryptographic primitives and protocols.

12. Discuss how quantum cryptography works and the impact of quantum computing on cryptographic

algorithms.

SEC-Engineering: Security Analysis, Design, and Engineering

CS Core:

1. Security engineering goals: building systems that remain dependable despite errors, accidents, or

malicious adversaries (See also: SE-Construction, SE-Validation, SEP-Security)

2. Privacy engineering goals: building systems that design, implement, and deploy privacy features

and controls (See also: SEP-Privacy)

200

3. Problem analysis and situational analysis to address system security (See also: SE-Validation)

4. Engineering tradeoff analysis based on time, cost, risk tolerance, risk acceptance, return on

investment, and so on (See also: PDC-Evaluation, SE-Validation)

KA Core:

5. Security design and engineering, including functional requirements, security subsystems,

information protection, security testing, security assessment, and evaluation (See also: PDC-

Evaluation, SE-Requirements, SE-Validation)

6. Security analysis, covering security requirements analysis; security controls analysis; threat

analysis; and vulnerability analysis (See also: FPL-Analysis, PDC-Evaluation)

7. Security attack domains and attack surfaces, e.g., communications and networking, hardware,

physical, social engineering, software, and supply chain (See also: NC-Security)

8. Security attack modes, techniques, and tactics, e.g., authentication abuse; brute force; buffer

manipulation; code injection; content insertion; denial of service; eavesdropping; function bypass;

impersonation; integrity attack; interception; phishing; protocol analysis; privilege abuse; spoofing;

and traffic injection (See also: NC-Security, OS-Protection, SE-Validation)

9. Attestation of software products with respect to their specification and adaptiveness (See also: SE-

Requirements, SE-Validation)

10. Design and development of cyber-physical systems

11. Considerations for trustworthy computing, e.g., tamper resistant packaging, trusted boot, trusted

kernel, hardware root of trust, software signing and verification, hardware-based cryptography,

virtualization, and containers (See also: SE-Construction, SE-Validation)

Illustrative Learning Outcomes:

CS Core:

1. Create a threat model for a system or system design.

2. Apply situational analysis to develop secure solutions under a specified scenario.

3. Evaluate a given scenario for tradeoff analysis for system performance, risk assessment, and costs.

KA Core:

4. Design a set of technical security controls, countermeasures, and information protections to meet

the security requirements and security objectives for a system.

5. Evaluate the effectiveness of security functions, technical controls, and componentry for a system.

6. Identify and mitigate security vulnerabilities and weaknesses in a system.

7. Evaluate and predict emergent behavior in areas such as Data Science, AI, and Machine Learning.

SEC-Forensics: Digital Forensics

KA Core:

1. Basic principles and methodologies for digital forensics

2. System design for forensics

3. Forensics in different situations: operating systems, file systems, application forensics, web

forensics, network forensics, mobile device forensics, use of database auditing (See also: NC-

Security)

4. Attacks on forensics and preventing such attacks

5. Incident handling processes

201

6. Rules of evidence – general concepts and differences between jurisdictions (See also: SEP-

Security)

7. Legal issues: digital evidence protection and management, chains of custody, reporting, serving as

an expert witness (See also: SEP-Security)

Illustrative Learning Outcomes:

KA Core:

1. Explain what a digital investigation is and how it can be implemented (See also: SEP-Security)

2. Design and implement software to support forensics.

3. Describe legal requirements for using seized data and its usage. (See also: SEP-Security)

4. Describe and implement an end-to-end chain of custody from initial digital evidence seizure to

evidence disposal. (See also: SEP-Privacy, SEP-Security)

5. Extract data from a hard drive to comply with the law (See also: SEP-Security)

6. Discuss a person’s professional responsibilities and liabilities when testifying as a forensics expert

(See also: SEP-Professional-Ethics)

7. Recover data based on a given search term from an imaged system

8. Reconstruct data and events from an application history, or a web artifact, or a cloud database, or a

mobile device. (See also: SPD-Mobile, SPD-Web)

9. Capture and analyze network traffic. (See also: NC-Security)

10. Develop approaches to address the challenges associated with mobile device forensics.

11. Apply forensics tools to investigate security breaches.

12. Identify and mitigate anti-forensic methods.

SEC-Governance: Security Governance

KA Core:

1. Protecting critical assets from threats

2. Security governance: organizational objectives and general risk assessment

3. Security management: achieve and maintain appropriate levels of confidentiality, integrity,

availability, accountability, authenticity, and reliability (See also: SE-Validation)

4. Security policy: organizational policies, issue-specific policies, system-specific policies

5. Approaches to identifying and mitigating risks to computing infrastructure

6. Data lifecycle management policies: data collection, backups, and retention; cloud storage and

services; breach disclosure (See also: DM-Security)

Illustrative Learning Outcomes:

KA Core:

1. Describe critical assets and how they can be protected.

2. Differentiate between security governance, management, and controls, giving examples of each.

3. Describe a technical control and implement it to mitigate specific threats.

4. Identify and assess risk of programs and database applications causing breaches.

5. Design and implement appropriate backup strategies conforming to a given policy.

6. Discuss a breach disclosure policy based on legal requirements and implement the policy.

7. Identify the risks and benefits of outsourcing to the cloud.

202

Professional Dispositions

● Meticulous: students need to pay careful attention to details to ensure the protection of real-world

software systems.

● Self-directed: students must be ready to deal with the many novel and easily unforeseeable ways

in which adversaries might launch attacks.

● Collaborative: students must be ready to collaborate with others, as collective knowledge and skills

will be needed to prevent attacks, protect systems and data during attacks, and plan for the future

after the immediate attack has been mitigated.

● Responsible: students need to show responsibility when designing, developing, deploying, and

maintaining secure systems, as their enterprise and society is constantly at risk.

● Accountable: students need to know that as future professionals they will be held accountable if a

system or data breach were to occur, which should strengthen their resolve to prevent such

breaches from occurring in the first place.

Mathematics Requirements

Required:

● MSF-Discrete

● MSF-Probability

● MSF-Statistics

Desired:

● MSF-Linear

Course Packaging Suggestions

There are two suggestions for course packaging, along with an additional suggestion for a more

advanced course.

The first suggestion for course packaging is to infuse the CS Core hours of the SEC KA into

appropriate places in other coursework that covers related security topics in the following knowledge

units. As the CS Core Hours of the SEC KA are only 6 hours, coursework covering one or more of the

following knowledge units could accommodate them.

● AI-SEP

● AL-SEP

● AR-Assembly

● AR-Memory

● DM-Security

● FPL-Translation

● FPL-Run-Time

● FPL-Analysis

https://docs.google.com/document/d/18xwrXC7uw6TzIozFshIVg33MjY_zxDII/edit?pli=1#heading=h.1uyd059pocbn

203

● FPL-Types

● HCI-Design

● HCI-Accountability

● HCI-SEP

● NC-Security

● OS-Protection

● PDC-Communication

● PDC-Coordination

● PDC-Evaluation

● SDF-Fundamentals

● SDF-Practices

● SE-Validation

● SEP-Privacy

● SEP-Security

● SF-Design

● SF-Security

● SPD-Common

● SPD-Mobile

● SPD-Web

The second approach for course packaging is to create an additional full course focused on security

that packages the following, building on the topics already covered in other knowledge areas.

Fundamentals of Computer Security:

● SEC-Foundations (6 hours)

● SEC-SEP (4 hours)

● SEC-Coding (7 hours)

● SEC-Crypto (5 hours)

● SEC-Engineering (4 hours)

● SEC-Forensics (2 hours)

● SEC-Governance (1 hour)

● AI-SEP (1 hour)

● AR-Assembly (1 hour)

● AR-Memory (1 hour)

● DM-Security (3 hours)

● FPL-Translation (1 hour)

● FPL-Run-Time (1 hour)

● FPL-Analysis (1 hour)

● FPL-Types (2 hours)

● HCI-Design (1 hour)

● HCI-Accountability (1 hour)

● HCI-SEP (1 hour)

● NC-Security (2 hours)

● OS-Protection (1 hour)

204

● PDC-Communication (1 hour)

● PDC-Coordination (1 hour)

● PDC-Evaluation (1 hour)

● SDF-Fundamentals (1 hour)

● SDF-Practices (1 hour)

● SE-Validation: (2 hours)

● SEP-Privacy (1 hour)

● SEP-Security (2 hours)

● SF-Design (2 hours)

● SF-Security (2 hours)

● SPD-Common (2 hours)

● SPD-Mobile (2 hours)

● SPD-Web: Web Platforms (2 hours)

The coverage exceeds 45 lecture hours, and so, in a typical course, instructors would need to decide

what topics to emphasize and what not to cover without losing the perspective that the course should

help students develop a security mindset.

Prerequisites: Depends on the selected topics, but appropriate coursework covering MSF, SDF, and

SE knowledge areas is needed.

Course objectives: Students should develop a security mindset and be ready to apply this mindset to

securing data, software, systems, and applications.

A third suggested packaging is to create an advanced course that develops a security

architect/engineer’s view by including the following:

Security Engineering:

● SEC-Foundations (6 hours)

● SEC-SEP (4 hours)

● SEC-Coding (6 hours)

● SEC-Crypto (2 hours)

● SEC-Engineering (10 hours)

● SEC-Forensics (2 hours)

● SEC-Governance (1 hour)

● DM-Security (2 hours)

● NC-Security (3 hours)

● OS-Protection (2 hours)

● PDC-Evaluation (2 hours)

● SDF-Fundamentals (1 hour)

● SDF-Practices (1 hour)

● SE-Validation (2 hours)

● SEP-Privacy (1 hour)

● SEP-Security (1 hour)

205

● SF-Design (2 hours)

● SF-Security (2 hours)

● SPD-Mobile (2 hours)

● SPD-Web (2 hours)

The coverage for all topics is over 45 lecture hours, and so instructors would need to decide what

topics to emphasize and what not to cover without losing the perspective that the course should help

students develop the security engineer’s mindset. Laboratory time related to data and network security,

web platform, secure coding and validation would be valuable aspects of this course.

Prerequisites: Depends on the selected topics, either the first or second packaging suggested above

would be recommended based on degree program needs.

Course objectives: Computer science students should develop the mindset of a security engineer and

be ready to apply this mindset to problems in designing and evaluating the security of a range of

computing systems and information services.

Committee

Chair: Rajendra K. Raj, Rochester Institute of Technology, Rochester, NY, USA

Members:

● Vijay Anand, University of Missouri – St. Louis, St. Louis, MO, USA

● Diana Burley, American University, Washington, DC, USA

● Sherif Hazem, Central Bank of Egypt, Cairo, Egypt

● Michele Maasberg, United States Naval Academy, Annapolis, MD, USA

● Bruce McMillin, Missouri University of Science and Technology, Rolla, MO, USA

● Sumita Mishra, Rochester Institute of Technology, Rochester, NY, USA

● Nicolas Sklavos, University of Patras, Patras, Greece

● Blair Taylor, Towson University, Towson, MD, USA

● Jim Whitmore, Dickinson College, Carlisle, PA, USA

Contributors:

● Markus Geissler, Cosumnes River College, Sacramento, CA, USA

● Michael Huang, Rider University, Lawrenceville, NJ, USA

● Tim Preuss, Minnesota State Community and Technical College, Moorhead, MN, USA

● Daniel Zappala, Brigham Young University, Provo, UT, USA

References

[1] Joint Task Force on Cybersecurity Education. 2017. Cybersecurity Curricula 2017. ACM, IEEE-

CS, AIS SIGSEC, and IFIP WG 11.8. https://doi.org/10.1145/3184594

https://doi.org/10.1145/3184594

206

207

Society, Ethics, and the Profession (SEP)

Preamble

The ACM Code of Ethics and Professional Conduct states: “Computing professionals' actions change

the world. To act responsibly, they should reflect upon the wider impacts of their work, consistently

supporting the public good.” The IEEE Code of Ethics starts by recognizing “the importance of our

technologies in affecting the quality of life throughout the world.” The AAAI Code of Professional Ethics

and Conduct begins with “Computing professionals, and in particular, AI professionals’ actions change

the world. To act responsibly, they should reflect upon the wider impacts of their work, consistently

supporting the public good.”

While technical issues dominate the computing curriculum, they do not constitute a complete

educational program in the broader context. It is more evident today than ever that students must also

be exposed to the larger societal context of computing to develop an understanding of the critical and

relevant social, ethical, legal, and professional issues and responsibilities at hand. This need to

incorporate the study of these non-technical issues into the ACM curriculum was formally recognized in

1991, as articulated in the following excerpt from CS1991 [1].

Undergraduates also need to understand the basic cultural, social, legal, and ethical issues

inherent in the discipline of computing. They should understand where the discipline has been,

where it is, and where it is heading. They should also understand their individual roles in this

process, as well as appreciate the philosophical questions, technical problems, and aesthetic

values that play an important part in the development of the discipline.

Students also need to develop the ability to ask serious questions about the social impact of

computing and to evaluate proposed answers to those questions. Future practitioners must be

able to anticipate the impact of introducing a given product into a given environment. Will that

product enhance or degrade the quality of life? What will the impact be upon individuals,

groups, and institutions?

Finally, students need to be aware of the basic legal rights of software and hardware vendors

and users, and they also need to appreciate the ethical values that are the basis for those

rights. Future practitioners must understand the responsibility that they will bear, and the

possible consequences of failure. They must understand their own limitations as well as the

limitations of their tools. All practitioners must make a long-term commitment to remaining

current in their chosen specialties and in the discipline of computing as a whole.

Nonetheless, in recent years myriad high-profile issues affecting society at large have occurred leading

to the conclusion that computer science professionals are not as prepared as they should be.

As technological advances (more specifically, how these advances are used by humans) continue to

significantly impact the way we live and work, the critical importance of social and ethical issues and

professional practice continues to increase in magnitude and consequence. The ways we use

208

computing products and platforms, while hopefully providing opportunities, also introduce ever more

challenging problems. A recent example is the emergence of generative AI, including large language

models that generate code. A 2020 Communications of the ACM article [4] stated: “... because

computing as a discipline is becoming progressively more entangled within the human and social

lifeworld, computing as an academic discipline must move away from engineering-inspired curricular

models and integrate the analytic lenses supplied by social science theories and methodologies.”

In parallel to, and as part of, the heightened awareness of the social consequences computing has on

the world, computing communities have become much more aware – and active – in areas of diversity,

equity, inclusion, and accessibility. These feature in statements and initiatives at ACM [8], IEEE [9], and

AAAI [10] and in their codes of conduct [1-3]. All students deserve an inclusive, diverse, equitable and

accessible learning environment. Computing students also have a unique duty to ensure that when put

to practice, their skills, knowledge, and competencies are applied in ways that work for, and not

against, the principles of diversity, equity, inclusion, and accessibility. These principles are inherently a

part of computing, and a new knowledge unit “Diversity, Equity, Inclusion and Accessibility” (SEP-DEIA)

has been added to this knowledge area.

Computer science educators may opt to deliver the material in this knowledge area within the contexts

of traditional technical and theoretical courses, in dedicated courses, and as part of capstone, project,

and professional practice courses. The material in this knowledge area is best covered through a

combination of all the above. It is too commonly held that many topics in this knowledge area may not

readily lend themselves to being covered in other more traditional computer science courses. However,

many of these topics naturally arise in traditional courses, or can be included with minimal effort. The

benefits of exposing students to SEP topics within the context of those traditional courses are

invaluable. Nonetheless institutional challenges will present barriers; for instance, some of these

traditional courses may not be offered at a given institution and, in such cases, it is difficult to cover

these topics appropriately without a dedicated SEP course. If social, ethical, and professional

considerations are covered only in a dedicated course and not in the context of others, it could reinforce

the false notion that technical processes are void of these important aspects, or that they are more

isolated than they are. Because of the broad relevance of these knowledge units, it is important that as

many traditional courses as possible include aspects such as case studies, that analyze ethical, legal,

social, and professional considerations in the context of the technical subject matter of those courses.

Courses in areas such as software engineering, databases, computer graphics, computer networks,

information assurance & security, and introduction to computing, all provide obvious context for

analysis of such issues. However, an ethics-related module could be developed for almost any

program. It would be explicitly against the spirit of these recommendations to have only a dedicated

course within a specific computer science curriculum without great practical reason. Further, these

topics should be covered in courses starting from year 1. Presenting them as advanced topics in later

courses only creates an artificial perception that SEP topics are only important at a certain level or

complexity. While it is true that the importance and consequence of SEP topics increases with level and

complexity, introductory topics are not devoid of SEP topics. Further, many SEP topics are best

presented early to lay a foundation for more intricate topics later in the curriculum.

209

Running through all the topics in this knowledge area is the need to speak to the computing

practitioner’s responsibility to proactively address issues through both ethical and technical actions.

Today it is important not only for the topics in this knowledge area, but for students’ knowledge in

general, that the ethical issues discussed in any course should be directly related to – and arise

naturally from – the subject matter of that course. Examples include a discussion in a database course

of the SEP aspects of data aggregation or data mining; or a discussion in a software engineering

course of the potential conflicts between obligations to the customer and users as well as all others

affected by their work. Computing faculty who are unfamiliar with the content and/or pedagogy of

applied ethics are urged to take advantage of the considerable resources from ACM, IEEE-CS, AAAI,

SIGCAS (ACM Special Interest Group on Computers and Society), and other organizations.

Additionally, it is the educator’s responsibility to impress upon students that this area is just as

important – in ways more important – than technical areas. The societal, ethical, and professional

knowledge gained in studying topics in this knowledge area will be used throughout one’s career and

are transferable between projects, jobs, and often even industries, particularly as one’s career

progresses into project leadership and management.

The ACM Code of Ethics and Professional Conduct [5], the IEEE Code of Ethics [6], and the AAAI

Code of Professional Ethics and Conduct [7] provide guidance that serve as the basis for the conduct of

all computing professionals in their work. The ACM Code emphasizes that ethical reasoning is not an

algorithm to be followed, and computer professionals are expected to consider how their work impacts

the public good as the primary consideration. It falls to computing educators to highlight the domain-

specific role of these topics for our students, but computer science programs should certainly be willing

to lean on complementary courses from the humanities and social sciences.

Most computing educators are not also moral philosophers. Yet CS2023, along with past CS curricular

recommendations, indicate the need for ethical analysis. CS2023 and prior curricular recommendations

are quite clear on the required mathematical foundations that students are expected to gain which are

often delivered by mathematics departments. Yet, the same is not true of moral philosophy. No one

would expect a student to be able to provide a proof by induction until after having successfully

completed a course in discrete mathematics. Yet, the parallel with respect to ethical analyses is

somehow absent. We seemingly do (often) expect our students to perform ethical analysis without

having the appropriate prerequisite knowledge from philosophy. Further, the application of ethical

analysis also underlies every other knowledge unit in this knowledge area. We acknowledge that the

knowledge unit Methods for Ethical Analysis (SEP-Ethical-Analysis) is the only one in this knowledge

area that does not readily lend itself to being taught in the context of other CS2023 knowledge areas.

Suggestions in terms of addressing this appear in the Course Packaging Suggestions.

The lack of prerequisite training in social, ethical, and professional topics has facilitated graduates

operating with a certain ethical egoism (e.g., ‘Here is what I believe/think/feel is right’). Regardless of

how well intentioned, one might conclude that this is what brought us to a point in history where there

are frequent occurrences of unintended consequences of technology, serious data breaches, and

software failures causing economic, emotional. and physical harm. Certainly, computing graduates who

have learned how to apply the various ethical frameworks or lenses proposed through the ages would

only serve to improve this situation. In retrospect, to ignore the lessons from moral philosophy, which

210

have been debated and refined for millennia – on what it means to act justly, or work for the common

good – appears as hubris.

A computer science student must not graduate without understanding how society and ethics influence

the computing profession. Nor should it be possible to complete a computer science degree without

learning how computing professionals influence society, the ethical considerations involved in shaping

that impact, and the student-turned-graduate’s role in these relationships, as both computing

professionals and members of society.

Changes Since CS2013

● The overall number of hours dedicated to this knowledge unit has doubled since CS2013 from 16 to

32 – CS2013 had 11 ‘Tier 1’ hours and 5 ‘Tier 2’ hours while CS2023 has 18 CS Core hours and 14

KA Core hours). However, many of these hours are best covered within the context of other

knowledge areas as discussed in the introduction to CS2023. Additionally:

○ Several knowledge units that were ‘elective only’ in CS2013 now have CS Core and KA

Core hours.

○ The number of hours in most knowledge units has increased.

● SEP has been re-titled from “Social Issues and Professional Practice” to “Society, Ethics, and the

Profession.” Our rationale follows.

○ Professional practice is an important part of being a professional. However, a solid

understanding of the profession in which one is to become a professional is needed –

indeed it is a prerequisite. Through this lens, professional conduct is part of a profession,

along with its history, values, norms, etc. Additionally, “the profession” appears in the ACM

tagline “Advancing Computing as a Science & Profession”, and the ACM code [5]: “The

ACM Code of Ethics and Professional Conduct …expresses the conscience of the

profession.” In a similar way the AAAI Code [7] states that it “...expresses the conscience of

the AI profession”, and the IEEE code [6] states: “in accepting a personal obligation to our

profession, its members and the communities we serve, do hereby commit ourselves to the

highest ethical and professional conduct.” While studying computing, students should not

only learn how to become professionals, but also learn about the profession in which they

will become professionals.

● Inclusion of the Diversity, Equity, Inclusion and Accessibility (DEIA) knowledge unit.

● Changed titles of two knowledge units

○ Professional Communication -> Communication

○ Analytical Tools -> Methods for Ethical Analysis

Core Hours

Knowledge Unit CS Core KA Core

Social Context 3 2

Methods for Ethical Analysis 2 1

211

Professional Ethics 2 2

Intellectual Property 1 1

Privacy and Civil Liberties 2 1

Communication 2 1

Sustainability 1 1

History 1 1

Economies of Computing 0 1

Security Policies, Laws, and Computer Crimes 2 1

Diversity, Equity, Inclusion and Accessibility 2 2

Total 18 14

Knowledge Units

SEP-Context: Social Context

Computers, the internet, and artificial intelligence - perhaps more than any other technologies - have

transformed society over the past several decades, with dramatic increases in human productivity; an

explosion of options for news, entertainment, and communication; and fundamental breakthroughs in

almost every branch of science and engineering. It is imperative to recognize that this is not a one-way

street. Society also affects computing, resulting in a complex socio-technical context that is constantly

changing, requiring the perspective of history to put the present as well as the possible future into

appropriate perspective.

Social Context provides the foundation for all other knowledge units in SEP, particularly Professional

Ethics.

CS Core:

1. Social implications (e.g., political and cultural ideologies) in a hyper-networked world where the

capabilities and impact of social media, artificial intelligence, and computing in general are rapidly

evolving.

2. Impact of computing applications (e.g., social media, artificial intelligence applications) on individual

well-being, and safety of all kinds (e.g., physical, emotional, economic).

3. Consequences of involving computing technologies, particularly artificial intelligence, biometric

technologies, and algorithmic decision-making systems, in civic life (e.g., facial recognition

technology, biometric tags, resource distribution algorithms, policing software) and how human

agency and oversight is crucial.

212

4. How deficits in diversity and accessibility in computing affect society and what steps can be taken to

improve equity in computing.

KA Core:

5. Growth and control of the internet, data, computing, and artificial intelligence

6. Often referred to as the digital divide, differences in access to digital technology resources and its

resulting ramifications for gender, class, ethnicity, geography, and/or developing countries,

including consideration of responsibility to those who might be less wealthy, under threat, or who

would struggle to have their voices heard.

7. Accessibility issues, including legal requirements such as Web Content Accessibility Guidelines

(www.w3.org/TR/WCAG21)

8. Context-aware computing

Illustrative Learning Outcomes:

CS Core:

1. Describe the different ways that computer technology (networks, mobile computing, artificial

intelligence) mediates social interaction at the personal and collective levels.

2. Identify developers’ assumptions and values embedded in hardware and software design,

especially as they pertain to usability for diverse populations including under-served and those with

disabilities.

3. Interpret the social context of a given design and its implementation.

4. Analyze the efficacy of a given design and implementation using empirical data.

5. Understand the implications of technology use (e.g., social media) for different identities, cultures,

and communities.

KA Core:

6. Describe the internet’s role in facilitating communication between citizens, governments, and each

other.

7. Analyze the effects of reliance on computing in the implementation of democracy (e.g., delivery of

social services, electronic voting).

8. Describe the impact of a lack of appropriate representation of people from historically minoritized

populations in the computing profession (e.g., industry culture, product diversity).

9. Discuss the implications of context awareness in ubiquitous computing systems.

10. Express how access to the internet and computing technologies affect different societies.

11. Identify why/how internet access can be viewed as a human right.

SEP-Ethical-Analysis: Methods for Ethical Analysis

Ethical theories and principles are the foundations of ethical analysis because they are the viewpoints

which can provide guidance along the pathway to a decision. Each theory emphasizes different

assumptions and methods for determining the ethicality of a given action. It is important for students to

recognize that decisions in different contexts may require different ethical theories (including

https://www.w3.org/TR/WCAG21

213

combinations) to arrive at ethically acceptable outcomes, and what constitutes ‘acceptable’ depends on

a variety of factors such as cultural context. Applying methods for ethical analysis requires both an

understanding of the underlying principles and assumptions guiding a given tool and an awareness of

the social context for that decision. Traditional ethical frameworks (e.g., [11]) as provided by western

philosophy can be useful, but they are not all-inclusive. Effort must be taken to include decolonial,

indigenous, and historically marginalized ethical perspectives whenever possible. No theory will be

universally applicable to all contexts, nor is any single ethical framework the ‘best.’ Engagement across

various ethical schools of thought is important for students to develop the critical thinking needed in

judiciously applying methods for ethical analysis of a given situation.

CS Core:

1. Avoiding fallacies and misrepresentation in argumentation

2. Ethical theories and decision-making (philosophical and social frameworks, e.g. [1])

3. Recognition of the role culture plays in our understanding, adoption, design, and use of computing

technology

4. Why ethics is important in computing, and how ethics is similar to, and different from, laws and

social norms

KA Core:

5. Professional checklists

6. Evaluation rubrics

7. Stakeholder analysis

8. Standpoint theory

9. Introduction to ethical frameworks (e.g., consequentialism such as utilitarianism, non-

consequentialism such as duty, rights, or justice, agent-centered such as virtue or feminism,

contractarianism, ethics of care) and their use for analyzing an ethical dilemma

Illustrative Learning Outcomes:

CS Core:

1. Describe how a given cultural context impacts decision making.

2. Express the use of example and analogy in ethical argument.

3. Analyze (and avoid) basic logical fallacies in an argument.

4. Analyze an argument to identify premises and conclusion.

5. Evaluate how and why ethics is so important in computing and how it relates to cultural norms,

values, and law.

6. Justify a decision made on ethical grounds.

KA Core:

7. Distinguish all stakeholder positions in relation to their cultural context in a given situation.

8. Analyze the potential for introducing or perpetuating ethical debt (deferred consideration of ethical

impacts or implications) in technical decisions.

9. Discuss the advantages and disadvantages of traditional ethical frameworks.

214

10. Analyze ethical dilemmas related to the creation and use of technology from multiple perspectives

using ethical frameworks.

SEP-Professional-Ethics: Professional Ethics

Computer ethics is a branch of practical philosophy that deals with how computing professionals should

make decisions regarding professional and social conduct. There are three primary influences: 1) the

individual's own personal ethical code, 2) any informal or formal regulation/decree/etc. of ethical

behavior existing in the workplace, applicable licensures, certifications, or laws, and 3) exposure to

formal codes of ethics and ethical frameworks.

CS Core:

1. Community values and the laws by which we live

2. The nature of being a professional including care, attention, discipline, fiduciary responsibility, and

mentoring

3. Keeping up to date as a computing professional in terms of familiarity, tools, skills, legal and

professional frameworks as well as the ability and responsibility to self-assess and progress in the

computing field

4. Professional certification, codes of ethics, conduct, and practice, such as the ACM, IEEE, AAAI,

and other international societies

5. Accountability, responsibility, and liability (e.g., software correctness, reliability and safety,

warranty, negligence, strict liability, ethical approaches to security vulnerability disclosures)

including whether a product/service should be built, not just doing so because it is technically

possible.

6. Introduction to theories describing the human creation and use of technology including

instrumentalism, sociology of technological systems, disability justice, neutrality thesis,

pragmatism, and decolonial models, including developing and using technology to right wrongs and

do good

7. Strategies for recognizing and reporting designs, systems, software, and professional conduct (or

their outcomes) that may violate law or professional codes of ethics

KA Core:

8. The role of the computing professional and professional societies in public policy

9. Maintaining awareness of consequences

10. Ethical dissent and whistleblowing

11. The relationship between regional culture and ethical dilemmas

12. Dealing with harassment and discrimination

13. Forms of professional credentialing

14. Ergonomics and healthy computing environments

15. Time-to-market and cost considerations versus quality professional standards

Illustrative Learning Outcomes:

CS Core:

215

1. Identify ethical issues that arise in software design, development practices, and software

deployment.

2. Discuss how to address ethical issues in specific situations.

3. Express the ethical responsibility of ensuring software correctness, reliability and safety including

from where this responsibility arises (e.g., ACM/IEEE/AAAI Codes of Ethics, laws and regulations,

organizational policies).

4. Describe the mechanisms that typically exist for a professional to keep up to date in ethical

matters.

5. Describe the strengths and weaknesses of relevant professional codes as expressions of being a

professional and guides to decision-making.

6. Analyze a global computing issue, observing the role of professionals and government officials in

managing this problem.

KA Core:

7. Describe ways in which professionals and professional organizations may contribute to public

policy.

8. Describe the consequences of inappropriate professional behavior.

9. Be familiar with whistleblowing and have access to knowledge to guide one through an incident.

10. Identify examples of how regional culture interplays with ethical dilemmas.

11. Describe forms of harassment and discrimination and avenues of assistance.

12. Assess various forms of professional credentialing.

13. State the relationship between ergonomics in computing environments and people’s health.

14. Describe issues associated with industries’ push to focus on time-to-market versus enforcing

quality professional standards.

SEP-IP: Intellectual Property

Intellectual property refers to a range of intangible rights of ownership in any product of human intellect,

such as a software program. Laws, which vary by locality, provide different methods for protecting

these rights of ownership based on their type. Ideally, intellectual property laws balance the interests of

creators and users of the property. There are four types of intellectual property rights relevant to

software: patents, copyrights, trade secrets, and trademarks. Moreover, property rights are often

protected by user licenses. Each affords a different type of legal protection.

CS Core:

1. Intellectual property rights

2. Intangible digital intellectual property (IDIP)

3. Legal foundations for intellectual property protection

4. Common software licenses (e.g., MIT, GPL and its variants, Apache, Mozilla, Creative Commons)

5. Plagiarism and authorship

KA Core:

6. Philosophical foundations of intellectual property

216

7. Forms of intellectual property (e.g., copyrights, patents, trade secrets, trademarks) and the rights

they protect

8. Limitations on copyright protections, including fair use and the first sale doctrine

9. Intellectual property laws and treaties that impact the enforcement of copyrights

10. Software piracy and technical methods for enforcing intellectual property rights, such as digital

rights management and closed source software as a trade secret

11. Moral and legal foundations of the open-source movement

12. Systems that use others’ data (e.g., large language models)

Illustrative Learning Outcomes:

CS Core:

1. Describe and critique legislation and precedent aimed at digital copyright infringements.

2. Identify contemporary examples of intangible digital intellectual property.

3. Select an appropriate software license for a given project.

4. Defend legal and ethical uses of copyrighted materials.

5. Interpret the intent and implementation of software licensing.

6. Discuss whether a use of copyrighted material is likely to be fair use.

7. Analyze the ethical issues inherent in various plagiarism detection mechanisms.

8. Identify multiple forms of plagiarism beyond verbatim copying of text or software (e.g., intentional

paraphrasing, authorship misrepresentation, and improper attribution).

KA Core:

9. Discuss the philosophical bases of intellectual property in an appropriate context (e.g., country).

10. Distinguish the conflicting issues involved in securing software patents.

11. Contrast the protections and obligations of copyright, patent, trade secret, and trademarks.

12. Describe the rationale for the legal protection of intellectual property in the appropriate context

(e.g., country).

13. Analyze the use of copyrighted work under the concepts of fair use and the first sale doctrine.

14. Identify the goals of the open-source movement and its impact on fields beyond computing, such

as the right-to-repair movement.

15. Summarize the global nature of software piracy.

16. Criticize the use of technical measures of digital rights management (e.g., encryption,

watermarking, copy restrictions, and region lockouts) from multiple stakeholder perspectives.

17. Discuss the nature of anti-circumvention laws in the context of copyright protection.

SEP-Privacy: Privacy and Civil Liberties

Electronic information sharing highlights the need to balance privacy protections with information

access. The ease of digital access to many types of data – in addition to copying and distributing these

data – makes privacy rights and civil liberties more complex, especially given cultural and legal

differences in these areas. Complicating matters further, privacy also has interpersonal, organizational,

professional/business, and governance components. In addition, the interconnected nature of online

communities raises challenges for managing expectations and protections for freedom of expression in

217

various cultures and nations. Technology companies that provide platforms for user-generated content

are under increasing pressure to perform governance tasks, potentially facing liability for their

decisions.

 CS Core:

1. Privacy implications of widespread data collection including but not limited to transactional

databases, data warehouses, surveillance systems, cloud computing, and artificial intelligence

2. Conceptions of anonymity, pseudonymity, and identity

3. Technology-based solutions for privacy protection (e.g., end-to-end encryption and differential

privacy)

4. Civil liberties, privacy rights, and cultural differences

KA Core:

5. Philosophical and legal conceptions of the nature of privacy including the right to privacy

6. Legal foundations of privacy protection in relevant jurisdictions (e.g., GDPR in the EU)

7. Privacy legislation in areas of practice (e.g., HIPAA in the US, AI Act in the EU)

8. Basic Principles of human-subjects research and principles beyond what the law requires (e.g.,

Belmont Report, UN Universal Declaration on Human Rights and how this relates to technology)

9. Freedom of expression and its limitations

10. User-generated content, content moderation, and liability

Illustrative Learning Outcomes:

CS Core:

1. Evaluate solutions to privacy threats in transactional databases and data warehouses.

2. Describe the role of data collection in the implementation of pervasive surveillance systems (e.g.,

RFID, face recognition, toll collection, mobile computing).

3. Distinguish the concepts and goals of anonymity and pseudonymity.

4. Describe the ramifications of technology-based privacy protections, including differential privacy

and end-to-end encryption.

5. Identify cultural differences regarding the nature and necessity of privacy and other civil liberties.

KA Core:

6. Discuss the philosophical basis for the legal protection of personal privacy in an appropriate

context (e.g., country).

7. Critique the intent, potential value, and implementation of various forms of privacy legislation and

principles beyond what the law requires.

8. Identify strategies to enable appropriate freedom of expression.

SEP-Communication: Communication

Computing is an inherently collaborative and social discipline making communication an essential

aspect of the profession. Much but not all of this communication occurs in a professional setting where

communication styles, expectations, and norms differ from other contexts where similar technology

218

might be used. Both professional and informal communication conveys information to various

audiences who may have different goals and needs for that information. Good communication is also

necessary for transparency and trustworthiness. It is also important to note that computing

professionals are not just communicators but are also listeners who must be able to hear and

thoughtfully make use of feedback received from various stakeholders. Effective communication skills

are not something one ‘just knows’ – they are developed and can be learned. Communication skills are

best taught in context throughout the undergraduate curriculum.

CS Core:

1. Oral, written, and electronic team and group communication

2. Technical communication materials (e.g., source code, and documentation, tutorials, reference

materials, API documentation)

3. Communicating with different stakeholders such as customers, leadership, or the public

4. Team collaboration (including tools) and conflict resolution

5. Accessibility and inclusivity requirements for addressing professional audiences

6. Cultural competence in communication including considering the impact of difference in natural

language

KA Core:

7. Tradeoffs in competing factors that affect communication channels and choices

8. Communicating to solve problems or make recommendations in the workplace, such as raising

ethical concerns or addressing accessibility issues

Illustrative Learning Outcomes:

CS Core:

1. Understand the importance of writing concise and accurate technical documents following well-

defined standards for format and for including appropriate tables, figures, and references.

2. Analyze written technical documentation for technical accuracy, concision, lack of ambiguity, and

awareness of audience.

3. Compose and deliver an audience-aware, accessible, and organized formal presentation.

4. Plan interactions (e.g., virtual, face-to-face, shared documents) with others in ways that invite

inclusive participation, model respectful consideration of others’ contributions, and explicitly value

diversity of ideas.

5. Identify and describe qualities of effective communication (e.g., virtual, face-to-face, intragroup,

shared documents).

6. Understand how to communicate effectively and appropriately as a member of a team including

conflict resolution techniques.

7. Discuss ways to influence performance and results in diverse and cross-cultural teams.

KA Core:

8. Assess personal strengths and weaknesses to work remotely as part of a team drawing from

diverse backgrounds and experiences.

9. Choose an appropriate way to communicate delicate ethical concerns.

219

SEP-Sustainability: Sustainability

Sustainability is defined by the United Nations as “development that meets the needs of the present

without compromising the ability of future generations to meet their own needs.” [12] Alternatively, it is

the “balance between the environment, equity and economy.” [13] As computing extends into more and

more aspects of human existence, we are already seeing estimates that double-digit percentages of

global electricity usage are consumed by computing activities, which unchecked will likely grow.

Further, electronics contribute individually to demand for rare earth elements, mineral extraction, and

countless e-waste concerns. Students should gain a background that recognizes these global and

environmental costs and their potential long-term effects on the environment and local communities.

CS Core:

1. Environmental, social, and cultural impacts of implementation decisions (e.g., sustainability goals,

algorithmic bias/outcomes, economic viability, and resource consumption)

2. Local/regional/global social and environmental impacts of computing systems and their use (e.g.,

carbon footprints, resource usage, e-waste) due to hardware (e.g., e-waste, data centers, rare

element and resource utilization, recycling) and software (e.g., cloud-based services, blockchain,

AI model training and use). This includes everyday use of hardware (cheap hardware replaced

frequently) and software (web-browsing, email, and other services with hidden/remote

computational demands).

3. Guidelines for sustainable design standards.

KA Core:

4. Systemic effects of complex computing technologies and phenomena (e.g., generative AI, data

centers, social media, offshoring, remote work).

5. Pervasive computing: Information processing that has been integrated into everyday objects and

activities, such as smart energy systems, social networking, and feedback systems to promote

sustainable behavior, transportation, environmental monitoring, citizen science and activism.

6. How the sustainability of software systems is interdependent with social systems, including the

knowledge and skills of its users, organizational processes and policies, and its societal context

(e.g., market forces, government policies).

Illustrative Learning Outcomes:

CS Core:

1. Identify ways to be a sustainable practitioner in a specific area or with a specific project.

2. Assess the environmental impacts of a given project’s deployment (e.g., energy consumption,

contribution to e-waste, impact of manufacturing).

3. Describe global social and environmental impacts of computer use and disposal.

4. List the sustainable effects of modern practices and activities (e.g., remote work, e-commerce,

cryptocurrencies, AI models, data centers).

KA Core:

220

5. Describe the environmental impacts of design choices within the field of computing that relate to

algorithm design, operating system design, networking design, database design, etc.

6. Analyze the social and environmental impacts of new system designs.

7. Design guidelines for sustainable IT design or deployment in areas such as smart energy systems,

social networking, transportation, agriculture, supply-chain systems, environmental monitoring, and

citizen activism.

8. Assess computing applications in respect to environmental issues (e.g., energy, pollution, resource

usage, recycling and reuse, food management and production).

SEP-History: Computing History

History is important because it provides a mechanism for understanding why our computing systems

operate the way they do, the societal contexts in which current approaches arose, and how those

continue to echo through the discipline today. Not only does computing affect society but vice-versa,

resulting in a complex socio-technical context that is constantly changing, requiring the perspective of

history to put the present, as well as possible futures, into appropriate perspective. It also informs

decisions based on successes and failures of the past including harm done and how to not repeat

them. The history of computing is often taught in context with foundational concepts, such as system

fundamentals and software development fundamentals. A focus should be placed on those who, due to

marginalization, have not historically featured as prominently as they should.

CS Core:

1. The history of computing: hardware, software, and human/organizational.

2. The role of history in the present including within different social contexts, and the relevance of this

history on the future.

KA Core:

3. Age I (Pre-digital): Ancient analog computing (Stonehenge, Antikythera mechanism, Salisbury

Cathedral clock, etc.), human-calculated number tables, Euclid, Lovelace, Babbage, Gödel,

Church, Turing, pre-electronic (electro-mechanical and mechanical) hardware

4. Age II (Early modern computing): ENIAC, UNIVAC, Bombes (Bletchley Park and codebreakers),

computer companies (e.g., IBM), mainframes, etc.

5. Age III (PC era): PCs, modern computer hardware and software, Moore’s Law

6. Age IV (Internet): Networking, internet architecture, browsers and their evolution, standards, born-

on-the-internet companies, and services (e.g., Google, Amazon, Microsoft, etc.), distributed

computing

7. Age V (Mobile & Cloud): Mobile computing and smartphones, cloud computing and models thereof

(e.g., SaaS), remote servers, security and privacy, social media

8. Age VI (AI): Decision making systems, recommender systems, generative AI and other machine

learning driven tools and technologies

Illustrative Learning Outcomes:

CS Core:

221

1. Understand the relevance and impact of computing history on recent events, present context, and

possible future outcomes, from more than one cultural perspective.

2. Discuss how perspectives held today have been shaped by history, and that alternative

perspectives exist (e.g., fears of AI replacing human workers vs AI augmenting human work,

various views on Moore’s Law).

KA Core:

3. Identify formative and consequential trends in the history of the computing field.

4. Identify the contributions of pioneering individuals or organizations (research labs, computer

companies, government offices) in the computing field.

5. Discuss the historical context for important moments in history of computing, such as the move

from vacuum tubes to transistors (TRADIC), early seminal operating systems (e.g., OS 360), Xerox

PARC and the first Apple computer with a GUI, the creation of specific programming language

paradigms, the first computer virus, the creation of the internet, the creation of the WWW, the dot

com bubble, Y2K, the introduction of smartphones, etc.

6. Compare daily life before and after the advent of milestone developments (e.g., personal

computers or the internet).

SEP-Economies: Economies of Computing

The economies of computing are important to those who develop and provide computing resources and

services to others as well as society in general. They impact users of these resources and services,

both professional and non-professional. Computing professionals have a duty to know the impact of

these topics on their own roles and activities and how choices made will impact users and society.

KA Core:

1. Economic models: regulated and unregulated, monopolies, network effects, and open market;

knowledge and attention economies

2. Pricing and deployment strategies: planned obsolescence, subscriptions, freemium, software

licensing, open-source, free software, adware

3. Impacts of differences in access to computing resources, and the effect of skilled labor supply and

demand on the quality of computing products

4. Automation, AI, and their effects on job markets, developers, and users

5. Ethical concerns surrounding the attention economy and other economies of computing (e.g.

informed consent, data collection, use of verbose legalese in user agreements)

Illustrative Learning Outcomes:

KA Core:

1. Summarize the social effects of economic models (e.g., the knowledge and attention economies).

2. Describe the differences and similarities of competing strategies (e.g., subscription vs freemium vs

free).

3. Discuss examples of digital divides.

4. Understand the effects of automation and AI on society.

5. Understand the ethical implications of computing economies that rely on attention and data.

222

SEP-Security: Security Policies, Laws and Computer Crimes

While security policies, laws and computer crimes are important topics, it is essential they are viewed

with the foundation of other social and professional knowledge units, such as Intellectual Property,

Privacy and Civil Liberties, Social Context, and Professional Ethics. Computers, the internet, and

artificial intelligence, perhaps more than any other technologies, have transformed society over the past

75 years. At the same time, these technologies have contributed to unprecedented threats to privacy;

new categories of computer crime and antisocial behavior; major disruptions to organizations; and the

large-scale concentration of risk in information systems.

CS Core:

1. Computer crimes, legal redress for computer criminals and impact on victims and society

2. Social engineering, computing-enabled fraud, identity theft and recovery from these

3. Cyber terrorism, criminal hacking, and hacktivism

4. Malware, viruses, worms

5. Attacks on critical infrastructure such as electrical grids and pipelines

6. Non-technical fundamentals of security (e.g., human engineering, policy, confidentiality)

KA Core:

7. Benefits and challenges of existing and proposed computer crime laws

8. Security policies and the challenges of change and compliance

9. Responsibility for security throughout the computing life cycle

10. International and local laws and how they intersect

Illustrative Learning Outcomes:

CS Core:

1. List classic examples of computer crimes and social engineering incidents with societal impact.

2. Identify issues with laws that apply to computer crimes.

3. Describe the motivation and ramifications of cyber terrorism, data theft, hacktivism, ransomware,

and other attacks.

4. Examine the ethical and legal issues surrounding the misuse of access and various breaches of

security.

5. Discuss the professional's role in security and the tradeoffs and challenges involved.

KA Core:

6. Investigate measures that can be taken by both individuals and organizations including

governments to prevent or mitigate the undesirable effects of computer crimes.

7. Design a company-wide security policy, which includes procedures for managing passwords and

employee monitoring.

8. Understand how legislation from one region may affect activities in another (e.g., how EU GDPR

applies globally, when EU persons are involved).

223

SEP-DEIA: Diversity, Equity, Inclusion, and Accessibility

Despite being a creative, often highly compensated field with myriad job (and other) opportunities,

racial, gender, and many other inequities in representation are pervasive in many regions. For too

many students, their first computer science course is their last. There are many factors including the

legacy of systemic racism, ableism, sexism, classism, and other injustices that contribute to the lack of

diverse identities within computer science, and there is no single or quick fix.

CS2023’s sponsoring organizations are ACM, IEEE, and AAAI. Each of these places a high value on

diversity, equity, inclusion, and accessibility; our computer science classrooms should promote and

model those principles. We should welcome and seek diversity – the gamut of human differences

including gender identity, ethnicity, race, politics, abilities and attributes, religion, nationality, etc.– in our

classrooms, departments, and campuses. We should strive to make our classrooms, labs, and curricula

accessible and to promote inclusion. We should aim for students and all community members to have a

sense of belonging that comes with being respected, wanted, and valued. To achieve equity, we must

allocate resources, promote fairness, and check our biases to ensure persons of all identities achieve

success. Accessibility should be addressed and implemented in all computing activities and products.

Explicitly infusing diversity, equity, inclusion, and accessibility (DEIA) across the computer science

curriculum demonstrates its importance for the department, institution, and our field – all of which are

likely to have a DEIA statement and/or initiative(s). This emphasis on DEIA is important ethically and a

bellwether issue of our time. Many professionals in computing already recognize attention to DEIA as

integral to disciplinary practice. Regardless of the degree to which these values appear in any one

computer science class, research suggests that a lack of attention to them results in inferior designs in

addition to harm and its perpetuation. Not only does data support that diverse teams outperform

homogeneous ones, but diverse teams may better prevent egregious technology failures in recent

headlines such as facial recognition misuse, airbag injuries and deaths, and other well-known failures

of science and computing.

CS Core:

1. How identity impacts and is impacted by computing technologies and environments (academic and

professional)

2. The benefits of diverse development teams and the impacts of teams that are not diverse

3. Inclusive language and charged terminology, and why their use matters

4. Inclusive behaviors and why they matter

5. Designing and developing technology with accessibility in mind

6. How computing professionals can influence and impact diversity, equity, inclusion and accessibility,

including but not only through the software they create

KA Core:

7. Experts and their practices that reflect the identities of the classroom and the world through

practical DEIA principles

8. Historic marginalization due to systemic social mechanisms, technological supremacy and global

infrastructure challenges to diversity, equity, inclusion, and accessibility

9. Cross-cultural differences in, and needs for, diversity, equity, inclusion, and accessibility

224

Illustrative Learning Outcomes:

CS Core:

1. Define and distinguish equity, equality, diversity, inclusion, and accessibility.

2. Identify language, practices, and behaviors that may make someone feel included in a workplace

and/or a team, and why is it relevant. Avoid charged terminology - see Words Matter

(www.acm.org/diversity-inclusion/words-matter) – this includes identifying and accommodating

users who are often excluded without thought and not considered at all.

3. Evaluate the accessibility of your classroom or lab. Evaluate the accessibility of your webpage.

(See www.w3.org/WAI and www.w3.org/TR/WCAG21).

4. Demonstrate collegiality and respect when working with team members who do not share your

identity. It is not enough to merely assign team projects. Faculty should prepare students for

teamwork and monitor, mentor, and assess the effectiveness of their student teams throughout a

project.

5. Compare the demographics of your institution’s computer science and STEM majors to the overall

institutional demographics. If they differ, identify factors that contribute to inequitable access,

engagement, and achievement in computer science among marginalized groups. If they do not,

assess why not.

6. Identify developers’ assumptions and values embedded in hardware and software design,

especially as they pertain to usability by diverse populations.

7. Identify examples of the benefits that diverse teams can bring to software products, and how a lack

of diversity has costs.

KA Core:

8. Analyze the work of experts who reflect the identities of the classroom and the world.

9. Assess the impact of power and privilege in the computing profession as it relates to culture,

industry, products, and society.

10. Develop examples of systemic changes that could positively address diversity, equity, inclusion,

and accessibility in a familiar context (i.e., in an introductory computing course) and an unfamiliar

context and when these might be different, or the same.

11. Compare the demographics of your institution to the overall community demographics. If they

differ, identify factors that contribute to inequitable access, engagement, and achievement among

marginalized groups. If they do not, assess why not.

Professional Dispositions

● Critically Self-reflective: Students should be able to inspect their own actions, thoughts, biases,

privileges, and motives to discover places where professional activity is not up to current standards.

They must strive to understand both conscious and unconscious biases and continuously work to

counteract them.

● Responsive: Students must quickly and accurately respond to changes in the field and adapt in a

professional manner, such as shifting from in-person office work to remote work at home. These

shifts require rethinking one’s entire approach to what is considered “professional”.

https://www.acm.org/diversity-inclusion/words-matter
https://www.w3.org/WAI/
https://www.w3.org/TR/WCAG21/

225

● Proactive: Students must be able to identify areas of importance (e.g., in accessibility and inclusion)

and understand how to address them for a more professional working environment.

● Culturally Competent: Students must prioritize cultural competence—the ability to work with people

from cultures different from one’s own – by using inclusive language, watching for, and counteracting

conscious and unconscious biases, and encouraging honest and open communication.

● Advocative: Students must think, speak, and act in ways that foster and promote diversity, equity,

inclusion, and accessibility in all ways including but not limited to teamwork, communication, and

product development (hardware and software).

● Responsible: Students must act responsibly in all areas of their work toward all users and

stakeholders including the society at large, colleagues, and their profession in general.

Course Packaging Suggestions

In computing, societal and ethical considerations arise in all other knowledge areas and therefore

should arise in the context of other computing courses, not just siloed in an “SEP course.” These topics

should be covered in courses starting from the first year (the only likely exception is SEP-Ethical-

Analysis: Methods for Ethical Analysis) although this could be delivered as part of a first-year course or

via a seminar or an online independent study.

Presenting SEP topics as advanced topics only covered in later courses could create the incorrect

perception that SEP topics are only important at a certain level or complexity. While it is true that the

importance and consequence of SEP topics increases with level and complexity, introductory topics are

not devoid of SEP topics. Further, many SEP topics are best presented early to lay a foundation for

more intricate topics later in the curriculum.

Instructor choice for some of these topics is complex. When SEP topics arise in other courses these

are naturally often taught by the instructor teaching that course, although at times bringing in expert

educators from other disciplines (e.g., law, ethics) could be advantageous. Stand-alone courses in SEP

– should they be needed – are likely best delivered by an interdisciplinary team. However, this brings

additional complexity. Regardless, who teaches SEP topics and/or courses warrants careful

consideration.

At a minimum the SEP CS Core learning outcomes are best covered in the context of courses

covering other knowledge areas – ideally the SEP KA Core hours are also, with the likely

exception of SEP-Ethical-Analysis. This knowledge unit (KU) underlies every other KU in the SEP

knowledge area (KA). However, this KU is the only one in the SEP KA that does not readily lend itself

to being taught in the context of other KAs. Delivering these topics warrants even more careful

consideration as to how/where they will be covered, and who will teach them. In conjunction with

covering SEP topics as they occur naturally in other KAs, dedicated SEP courses can add value.

However, a sole, stand-alone course in a program where SEP topics are not covered in other courses

should be a last resort.

At some institutions, an in-depth dedicated course at the mid- or advanced-level may be offered

covering all recommended topics in both the CS Core and KA Core KUs in close coordination with

learning outcomes best covered in the context of courses covering other KAs. Such a course

could include:

226

● SEP-Context (5 hours)

● SEP-Ethical-Analysis (3 hours)

● SEP-Professional-Ethics (4 hours)

● SEP-IP (2 hours)

● SEP-Privacy (3 hours)

● SEP-Communication (3 hours)

● SEP-Sustainability (2 hours)

● SEP-History (2 hours)

● SEP-Economies (1 hour)

● SEP-Security (3 hours)

● SEP-DEIA (4 hours)

Skill Statement

A student who completes this course should be able to contribute to systemic change by applying

societal and ethical knowledge using relevant underpinnings and frameworks to their work in the

computing profession in a culturally competent manner including contributing to positive developments

in inclusion, equity, diversity, and accessibility in computing.

At some institutions, a dedicated minimal course may be offered covering the CS Core knowledge

units in close coordination with learning outcomes best covered in the context of courses

covering other knowledge areas. Such a course could include:

● SEP-Context (3 hours)

● SEP-Ethical-Analysis (2 hours)

● SEP-Professional-Ethics (2 hours)

● SEP-IP (1 hour)

● SEP-Privacy (2 hours)

● SEP-Communication (2 hours)

● SEP-Sustainability (1 hour)

● SEP-History (1 hour)

● SEP-Security (2 hours)

● SEP-DEIA (2 hours)

Skill Statement

A student who completes this course should be able to apply societal and ethical knowledge to their

work in the computing profession while fostering and contributing to inclusion, equity, diversity, and

accessibility in computing.

Some Exemplary Materials

● Emanuelle Burton, Judy Goldsmith, Nicholas Mattei, Cory Siler, and Sara-Jo Swiatek. 2023.

Teaching Computer Science Ethics Using Science Fiction. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 2 (SIGCSE 2023). Association for

Computing Machinery, New York, NY, USA, 1184. https://doi.org/10.1145/3545947.3569618

● Randy Connolly. 2020. Why computing belongs within the social sciences. Commun. ACM 63, 8

(August 2020), 54–59. https://doi.org/10.1145/3383444

http://sep-ethical-analysis/
http://sep-ethical-analysis/
https://doi.org/10.1145/3545947.3569618

227

● Casey Fiesler. Tech Ethics Curricula: A Collection of Syllabi Used to Teach Ethics in

Technology Across Many Universities

a. https://cfiesler.medium.com/tech-ethics-curricula-a-collection-of-syllabi-3eedfb76be18 ;

accessed March 12, 2024.

b. Tech Ethics Curricula; accessed March 12, 2024.

● Casey Fiesler. Tech Ethics Readings: A Spreadsheet of Readings Used to Teach Ethics in

Technology Tech Ethics Class Readings; accessed March 12, 2024.

● Stanford Embedded EthiCS, Embedding Ethics in Computer Science.

https://embeddedethics.stanford.edu/; accessed March 12, 2024.

● Jeremy, Weinstein, Rob Reich, and Mehran Sahami. System Error: Where Big Tech Went

Wrong and How We Can Reboot. Hodder Paperbacks, 2023.

● Baecker, R. Computers in Society: Modern Perspectives, Oxford University Press. (2019).

● Embedded EthiCS @ Harvard: bringing ethical reasoning into the computer science curriculum.

https://embeddedethics.seas.harvard.edu/about; accessed March 12, 2024.

Committee

Chair: Brett A. Becker, University College Dublin, Dublin, Ireland

Members:

● Richard L. Blumenthal, Regis University, Denver, CO, USA

● Mikey Goldweber, Denison University, Granville, OH, USA

● James Prather, Abilene Christian University, Abilene, TX, USA

● Susan Reiser, University of North Carolina Asheville, Asheville, NC, USA

● Michelle Trim, University of Massachusetts Amherst, Amherst, MA, USA

● Titus Winters, Google, Inc, New York, NY, USA

Contributors:

● Jake Baskin, Computer Science Teachers Association, Chicago, IL, USA

● Johanna Blumenthal, Regis University, Denver, CO, USA

● Chris Stephenson, Google, Portland, OR, USA

● MaryAnne Egan, Siena College, Loudonville, NY, USA

● Catherine Mooney, University College Dublin, Dublin, Ireland

● Fay Cobb Payton, North Carolina State University, Raleigh, NC, USA

● Keith Quille, Technological University of Dublin, Dublin, Ireland

● Mehran Sahami, Stanford University, Stanford, CA, USA

● Mark Scanlon, University College Dublin, Dublin, Ireland

● Karren Shorofsky, University of San Francisco School of Law, San Francisco, CA, USA

● Andreas Stefik, University of Nevada, Las Vegas, Las Vegas, NV, USA

● Ellen Walker, Hiram College, Cleveland, OH, USA

https://cfiesler.medium.com/tech-ethics-curricula-a-collection-of-syllabi-3eedfb76be18
https://docs.google.com/spreadsheets/u/1/d/1Z0DqQeZ-Aeq6LmD17J5m8zeeIR6ywWnH-WO-jWtXE9M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zhR0I3TbR7bMoDoN_N9P-_Kx7FJHWwMywF3PKozKcDY/edit#gid=886085473
https://embeddedethics.stanford.edu/
https://embeddedethics.seas.harvard.edu/about

228

References

[1] ACM/IEEE-CS Joint Curriculum Task Force. “Computing Curricula 1991.” (New York, USA: ACM

Press and IEEE Computer Society Press, 1991).

[2] ACM/IEEE-CS Joint Curriculum Task Force. “Computing Curricula 2001 Computer Science.” (New

York, USA: ACM Press and IEEE Computer Society Press, 2001).

[3] ACM/IEEE-CS Interim Review Task Force. “Computer Science Curriculum 2008: An interim revision

of CS 2001.” (New York, USA: ACM Press and IEEE Computer Society Press, 2008).

[4] Randy Connolly. 2020. Why computing belongs within the social sciences. Commun. ACM 63, 8
(August 2020), 54–59. https://doi.org/10.1145/3383444

[5] ACM Code of Ethics and Professional Conduct. www.acm.org/about/code-of-ethics

[6] IEEE Code of Ethics. https://www.ieee.org/about/corporate/governance/p7-8.html; accessed March

12, 2024.
[7] AAAI Code of Professional Ethics and Conduct. https://aaai.org/Conferences/code-of-ethics-and-

conduct.php; accessed March 12, 2024.
[8] Diversity, Equity, and Inclusion - Welcoming All to Computing https://www.acm.org/diversity-

inclusion; accessed March 12, 2024.

[9] Diversity, Equity & Inclusion at IEEE. https://www.ieee.org/about/diversity-index.html; accessed

March 12, 2024.
[10] AAAI Diversity Statement. https://aaai.org/about-aaai/ethics-and-diversity/#diversity-statement;

accessed March 12, 2024.
[11] A Framework for Ethical Decision Making. https://www.scu.edu/ethics/ethics-resources/a-

framework-for-ethical-decision-making/ accessed March 12, 2024.

[12] Sustainability | United Nations. https://www.un.org/en/academic-impact/sustainability; accessed

March 12, 2024.

[13] What is Sustainability? https://www.sustain.ucla.edu/what-is-sustainability; accessed March 12,

2024.

https://aaai.org/Conferences/code-of-ethics-and-conduct.php
https://aaai.org/Conferences/code-of-ethics-and-conduct.php
https://www.acm.org/diversity-inclusion
https://www.acm.org/diversity-inclusion
https://www.ieee.org/about/diversity-index.html
https://aaai.org/about-aaai/ethics-and-diversity/#diversity-statement
https://www.sustain.ucla.edu/what-is-sustainability

229

Systems Fundamentals (SF)

Preamble

A computer system is a set of hardware and software infrastructures upon which applications are

constructed. Computer systems have become a pillar of people's daily life. As such, it is essential for

students to learn knowledge about computer systems, grasp the skills to use and design these

systems, and understand the fundamental rationale and principles in computer systems. It could equip

students with the necessary competence for a career related to computer science.

In the curriculum of computer science, the study of computer systems typically spans multiple

knowledge areas, including, but not limited to, operating systems, parallel and distributed systems,

communications networks, computer architecture and organization, and software engineering. The

System Fundamentals knowledge area, as suggested by its name, focuses on the fundamental

concepts and design principles in computer systems that are shared by these courses within their

respective cores. The goal of this knowledge area is to present an integrative view of these

fundamental concepts and design principles in a unified albeit simplified fashion, providing a common

foundation for the different specialized mechanisms and policies appropriate to the specific domain

area. The fundamental concepts in this knowledge area include an overview of computer systems,

basic concepts such as state and state transition, resource allocation and scheduling, and so on.

Moreover, this knowledge area introduces basic design principles to improve the reliability, availability,

efficiency, and security of computer systems.

Changes since CS2013

Compared to CS2013, the SF knowledge area incorporated significant changes to the knowledge units.

• Added two new knowledge units: System Security and System Design.

• Added a new knowledge unit named System Performance, which includes the topics from the

deprecated knowledge unit of Proximity and the deprecated knowledge unit of Virtualization and

Isolation.

• Added a new knowledge unit named Performance Evaluation, that includes the topics from the

deprecated unit of Evaluation and the deprecated unit of Quantitative Evaluation.

• Renamed the Computational Paradigms knowledge unit to Overview of Computer Systems,

deprecated some topics in the unit, and added topics from the deprecated unit of Cross-Layer

Communications.

• Renamed the State and State Machines knowledge unit to Basic Concepts and added topics such

as finite state machines.

• Deprecated the Cross-Layer Communications knowledge unit and moved parts of its topics to the

unit of Overview of Computer Systems.

• Deprecated the Evaluation and Quantitative Evaluation knowledge units and moved parts of their

topics to the unit of Performance Evaluation.

230

• Deprecated the Proximity and Virtualization and Isolation knowledge units and moved parts of their

topics to the knowledge unit of System Performance.

• Deprecated the Parallelism knowledge unit and moved parts of its topic to the Basic Concepts

knowledge unit.

• Renamed the Reliability through Redundancy knowledge unit to System Reliability.

• Added the Society, Ethics, and the Profession knowledge unit.

Core Hours

Knowledge Unit CS Core KA Core

Overview of Computer Systems 3 0

Basic Concepts 4 0

Resource Management 1 1

System Performance 2 2

Performance Evaluation 2 2

System Reliability 2 1

System Security 2 1

System Design 2 1

Society, Ethics, and Profession Included in SEP hours

Total 18 8

Knowledge Units

SF-Overview: Overview of Computer Systems

CS Core:

1. Basic building blocks and components of a computer (gates, flip-flops, registers, interconnections;

datapath + control + memory)

2. Hardware as a computational paradigm: Fundamental logic building blocks; Logic expressions,

minimization, sum of product forms (See also: AR-Logic)

3. Programming abstractions, interfaces, use of libraries (See also: PDC-Programs)

4. Distinction and interaction between application and OS services, remote procedure call (See also:

OS-Purpose)

5. Basic concept of pipelining, overlapped processing stages (See also: AR-Organization)

6. Basic concept of scaling: performance vs problem size

Illustrative Learning Outcomes:

231

CS Core:

1. Describe the basic building blocks of computers and their role in the historical development of

computer architecture.

2. Design a simple logic circuit using the fundamental building blocks of logic design to solve a simple

problem (e.g., adder).

3. Describe how computing systems are constructed of layers upon layers, based on separation of

concerns, with well-defined interfaces, hiding details of low layers from the higher layers.

4. Describe that hardware, OS, VM, and application are additional layers of interpretation/processing.

5. Describe the mechanisms of how errors are detected, signaled back, and handled through the

layers.

6. Construct a simple program (e.g., a TCP client/server) using methods of layering, error detection

and recovery, and reflection of error status across layers.

7. Identify bugs in a layered program by using tools for program tracing, single stepping, and

debugging.

8. Understand the concept of strong vs weak scaling, i.e., how performance is affected by the scale of

the problem vs the scale of resources to solve the problem. This can be motivated by simple, real-

world examples.

SF-Foundations: Basic Concepts

CS Core:

1. Digital vs Analog/Discrete vs Continuous Systems

2. Simple logic gates, logical expressions, Boolean logic simplification

3. Clocks, State, Sequencing

4. State and state transition (e.g., starting state, final state, life cycle of states) (See also: AL-Models)

5. Finite state machines (e.g., NFA, DFA) (See also: AL-Models)

6. Combinational Logic, Sequential Logic, Registers, Memories (See also: AR-Logic)

7. Computers and Network Protocols as examples of State Machines (See also: NC-Fundamentals)

8. Sequential vs parallel processing. (See also: PDC-Programs, OS-Concurrency)

9. Application-level sequential processing: single thread (See also: PDC-Programs, OS-Concurrency)

10. Simple application-level parallel processing: request level (web services/client-server/distributed),

single thread per server, multiple threads with multiple servers, pipelining (See also: PDC-

Programs, OS-Concurrency)

Illustrative Learning Outcomes:

CS Core:

1. Describe the differences between digital and analog systems, and between discrete and continuous

systems. Can give real-world examples of these systems.

2. Describe computations as a system characterized by a known set of configurations with transitions

from one unique configuration (state) to another (state).

3. Describe the distinction between systems whose output is only a function of their input (stateless)

and those with memory/history (stateful).

4. Develop state machine descriptions for simple problem statement solutions (e.g., traffic light

sequencing, pattern recognizers).

5. Describe a computer as a state machine that interprets machine instructions.

232

6. Explain how a program or network protocol can also be expressed as a state machine and that

alternative representations for the same computation can exist.

7. Derive the time-series behavior of a state machine from its state machine representation (e.g., TCP

connection management state machine).

8. Write a simple sequential problem and a simple parallel version of the same program.

9. Evaluate the performance of simple sequential and parallel versions of a program with different

problem sizes and be able to describe the speed-ups achieved.

10. Describe on an execution timeline how parallelism events and operations can take place

simultaneously (i.e., at the same time). Explain how work can be performed in less elapsed time if

this can be exploited.

SF-Resource: Resource Management

CS Core:

1. Different types of resources (e.g., processor share, memory, disk, net bandwidth) (See also: OS-

Scheduling, OS-Memory, OS-Files, NC-Fundamentals)

2. Common resource allocation/scheduling algorithms (e.g., first-come-first-serve, priority-based

scheduling, fair scheduling, and preemptive scheduling) (See also: OS-Scheduling)

KA Core:

3. Advantages and disadvantages of common scheduling algorithms (See also: OS-Scheduling)

Illustrative Learning Outcomes:

CS Core:

1. Define how finite computer resources (e.g., processor share, memory, storage, and network

bandwidth) are managed by their careful allocation to existing entities.

2. Describe how common resource allocation/scheduling algorithms work.

3. Develop common scheduling algorithms and evaluate their performances.

KA Core:

4. Describe the pros and cons of common scheduling algorithms.

SF-Performance: System Performance

CS Core:

1. Latencies in computer systems

a. Speed of light and computers (one foot per nanosecond vs one GHz clocks) (See also: AR-

Organization)

b. Memory vs disk latencies vs across-the-network memory (See also: AR-Memory, AR-

Performance-Energy)

2. Caches and the effects of spatial and temporal locality on performance in processors and systems

(See also: AR-Memory, AR-Performance-Energy, OS-Memory)

3. Caches and cache coherency in databases, operating systems, distributed systems, and computer

architecture (See also: OS-Memory, AR-Memory, DM-Internals)

4. Introduction to the processor memory hierarchy (See also: AR-Memory, AR-Performance-Energy)

233

KA Core:

5. The formula for average memory access time (See also: AR-Memory)

6. Rationale of virtualization and isolation: protection and predictable performance (See also: OS-

Virtualization)

7. Levels of indirection, illustrated by virtual memory for managing physical memory resources (See

also: OS-Virtualization)

8. Methods for implementing virtual memory and virtual machines (See also: OS-Virtualization)

Illustrative Learning Outcomes:

CS Core:

1. Describe the breakdown of the latency of computer systems in terms of memory, disk, and network.

2. Explain the importance of locality in determining system performance.

3. Calculate average memory access time and describe the tradeoffs in memory hierarchy

performance in terms of capacity, miss/hit rate, and access time.

KA Core:

4. Explain why it is important to isolate and protect the execution of individual programs and

environments that share common underlying resources.

5. Describe how the concept of indirection can create the illusion of a dedicated machine and its

resources even when physically shared among multiple programs and environments.

6. Evaluate the performance of two application instances running on separate virtual machines and

determine the effect of performance isolation.

SF-Evaluation: Performance Evaluation

CS Core:

1. Performance figures of merit (See also: AR-Performance-Energy, PDC-Evaluation)

2. Workloads and representative benchmarks, and methods of collecting and analyzing performance

figures of merit (See also: AR-Performance-Energy, PDC-Evaluation)

3. CPI (Cycles per Instruction) equation as a tool for understanding tradeoffs in the design of

instruction sets, processor pipelines, and memory system organizations (See also: AR-

Performance-Energy, PDC-Evaluation)

4. Amdahl’s Law: the part of the computation that cannot be sped up limits the effect of the parts that

can (See also: AR-Performance-Energy, PDC-Evaluation)

5. Order of magnitude analysis (Big O notation) (See also: AL-Complexity)

6. Analysis of slow and fast paths of a system (See also: AR-Organization)

7. Events on their effect on performance (e.g., instruction stalls, cache misses, page faults) (See also:

OS-Memory, AR-Organization)

KA Core:

7. Analytical tools to guide quantitative evaluation

8. Understanding layered systems, workloads, and platforms, their implications for performance, and

the challenges they represent for evaluation

9. Microbenchmark pitfalls

234

Illustrative Learning Outcomes:

CS Core:

1. Explain how the components of system architecture contribute to improving its performance.

2. Explain the circumstances in which a given figure of a system performance metric is useful.

3. Explain the usage and inadequacies of benchmarks as a measure of system performance.

4. Describe Amdahl’s law and discuss its limitations.

5. Apply limit studies or simple calculations to produce order-of-magnitude estimates for a given

performance metric in a given context.

6. Apply software tools to profile and measure program performance.

KA Core:

7. Design and conduct a performance-oriented experiment of a common system (e.g., an OS and

Spark).

8. Design a performance experiment on a layered system to determine the effect of a system

parameter on system performance.

SF-Reliability: System Reliability

CS Core:

1. Distinction between bugs, faults, and failures (See also: PDC-Coordination, SE-Reliability)

2. Reliability vs availability

3. Reliability through redundancy

a. check and retry (See also: OS-Faults, NC-Reliability)

b. redundant encoding (error correction codes, CRC, FEC, RAID) (See also: AR-Memory, NC-

Reliability, DM-Distributed)

c. duplication/mirroring/replicas (See also: DM-Distributed)

KA Core:

4. Other approaches to reliability (e.g., journaling) (See also: OS-Faults, NC-Reliability, SE-Reliability)

Illustrative Learning Outcomes:

CS Core:

1. Explain the distinction between program errors, system errors, and hardware faults (e.g., corrupted

memory) and exceptions (e.g., attempt to divide by zero).

2. Articulate the distinction between detecting, handling, and recovering from faults and the methods

for their implementation.

3. Describe the role of error correction codes in providing error checking and correction techniques in

memories, storage, and networks.

4. Apply simple algorithms for exploiting redundant information for the purposes of data correction.

KA Core:

5. Compare different error detection and correction methods for their data overhead, implementation

complexity, and relative execution time for encoding, detecting, and correcting errors.

235

SF-Security: System Security

CS Core:

1. Common system security issues (e.g., viruses, denial-of-service attacks, and eavesdropping) (See

also: OS-Protection, NC-Security, SEC-Foundations, SEC-Engineering)

2. Countermeasures (See also: OS-Principles, OS-Protection, NC-Security)

a. Cryptography (See also: SEC-Crypto)

b. Security architecture (See also: SEC-Engineering)

KA Core:

3. Representative countermeasure systems

a. Intrusion detection systems, firewalls (See also: NC-Security)

b. Antivirus systems

Illustrative Learning Outcomes:

CS Core:

1. Describe some common system security issues and give examples

2. Describe some countermeasures against system security issues

KA Core:

3. Describe representative countermeasure systems

SF-Design: System Design

CS Core:

1. Common criteria of system design (e.g., liveness, safety, robustness, scalability, and security) (See

also: PDC-Evaluation)

KA Core:

2. Designs of representative systems (e.g., Apache web server, Spark, and Linux)

Illustrative Learning Outcomes:

CS Core:

1. Describe common criteria of system design.

2. Given the functionality requirements of a system and its key design criteria, provide a high-level

design of this system.

KA Core:

3. Describe the design of some representative systems.

SF-SEP: Society, Ethics, and the Profession

KA Core:

1. Intellectual property rights of computer systems (See also: SEP-IP)

2. Common software licenses (See also: SEP-IP)

3. Computer crimes (See also: SEP-Security)

236

Illustrative Learning Outcomes:

KA Core:

1. Describe the intellectual property rights of computer systems.

2. List representative software licenses and compare their differences.

3. List representative computer crimes.

Professional Dispositions

● Meticulous: Students must pay attention to details of different perspectives when learning about

and evaluating systems.

● Adaptive: Students must be flexible and adaptive when designing systems. Different systems have

different requirements, constraints and working scenarios. As such, they require different designs.

Students must be able to make appropriate design decisions correspondingly.

Mathematics Requirements

Required:

● Discrete Mathematics (See also: MSF-Discrete)

o Sets and relations

o Basic graph theory

o Basic logic

● Linear Algebra (See also: MSF-Linear)

o Basic matrix operations

● Probability and Statistics (See also: MSF-Probability, MSF-Statistics)

o Random variable

o Bayes theorem

o Expectation and Variation

o Cumulative distribution function and probability density function

Desirable:

● Basic queueing theory

● Basic stochastic process

Course Packaging Suggestions

Introductory Course to include the following:

● SF-Overview (2 hours)

● SF-Foundations (6 hours)

● SF-Resource (4 hours)

● SF-Performance (6 hours)

● SF-Evaluation (6 hours)

https://en.wikipedia.org/wiki/Cumulative_distribution_function

237

● SF-Reliability (4 hours)

● SF-Security (5 hours)

● SF-SEP (1 hour)

● SF-Design (6 hours)

Prerequisites:

● Sets and relations, basic graph theory and basic logic from Discrete Mathematics (See also:

MSF-Discrete)

● Basic matrix operations from Linear Algebra (See also: MSF-Linear)

● Random variable, Bayes theorem, expectation and variation, cumulative distribution function

and probability density function from Probability and Statistics (See also: MSF-Probability, MSF-

Statistics)

Course objectives: Students should be able to (1) understand the fundamental concepts in computer

systems; (2) understand the key design principles, in terms of performance, reliability and security,

when designing computer systems; (3) deploy and evaluate representative complex systems (e.g.,

MySQL and Spark) based on their documentations, and (4) design and implement simple computer

systems (e.g., an interactive program, a simple web server, and a simple data storage system).

Advanced Course to include the following:

● SF-Overview: Overview of Computer Systems (2 hours)

● SF-Design: System Design (8 hours)

● OS-Purpose, OS-Principles (2 hours)

● NC-Fundamentals, NC-Networked-Applications (2 hours)

● PDC-Programs (2 hours)

● AR-IO, AR-Performance-Energy (2 hours)

● SF-Reliability (8 hours)

● SF-Performance (6 hours)

● SF-Security (6 hours)

● SF-SEP: (2 hours)

Prerequisites:

● Basic queueing theory and stochastic process (See also: MSF-Probability, MSF-Statistics)

● Introductory course of the SF knowledge area

Course objectives: Students should be able to (1) have a deeper understanding in the key design

principles of computer system design, (2) map such key principles to the designs of classic systems

(e.g., Linux, SQL and TCP/IP network stack) as well as that of more recent systems (e.g., Hadoop,

Spark and distributed storage systems), and (3) design and implement more complex computer

systems (e.g., a file system and a high-performance web server).

Committee

https://en.wikipedia.org/wiki/Cumulative_distribution_function

238

Chair: Qiao Xiang, Xiamen University, Xiamen, China

Members:

● Doug Lea, State University of New York at Oswego, Oswego, NY, USA

● Monica D. Anderson, University of Alabama, Tuscaloosa, AL, USA

● Matthias Hauswirth, University of Lugano, Lugano, Switzerland

● Ennan Zhai, Alibaba Group, Hangzhou, China

● Yutong Liu, Shanghai JiaoTong University, Shanghai, China

Contributors:

● Michael S. Kirkpatrick, James Madison University, Harrisonburg, VA, USA

● Linghe Kong, Shanghai JiaoTong University, Shanghai, China

239

Specialized Platform Development (SPD)

Preamble

The Specialized Platform Development (SPD) knowledge area refers to attributes involving the creation

of software targeting non-traditional hardware platforms. Developing for each specialized platform, for

example, robots, mobile systems, web-based systems, and embedded systems, typically involves

unique considerations.

Societal and industry needs have created a high demand for developers on specialized platforms, such

as mobile applications, web platforms, robotic platforms, and embedded systems. Some unique

professional abilities relevant to this knowledge area include the following.

● Creating applications that provide a consistent user experience across various devices, screen

sizes, and operating systems.

● Developing application programming interfaces (APIs) to support the functionality of each

specialized platform.

● Managing challenges related to resource constraints such as computation, memory, storage,

and networking and communication.

● Applying cross-cutting concerns such as optimization, security, better development practices,

etc.

Changes since CS2013

The assessment of these factors has led to significant modifications from the CS2013 version, including

the following.

• The knowledge area name has been changed to reflect the specialized development platforms

which serve as the target for software development.

• Reflecting the increased deployment of specialized hardware platforms, the number of CS Core

hours has been increased.

• Reflecting modern computing systems, knowledge units in Robotics, Embedded Systems, and

Society, Ethics, and the Profession (SEP) have been introduced.

• Other changes include: 1) renamed Introduction knowledge unit to Common Aspects/Shared

Concerns and 2) renamed Industrial Platforms to Robot Platforms.

Core Hours

Knowledge Unit CS Core KA Core

Common Aspects 3 + (1 SE) 2

Web Platforms 5 + (1 HCI)

240

Mobile Platforms 3 + (2 DM) + (1 GIT) + (1 HCI) + (1 NC)

Robot Platforms 4 + (3 GIT) + (3 AI)

Embedded Platforms 4 + (4 AR) + (1 FPL) + (1 GIT) + (3 OS) + (1 SF)

Game Platforms 4 + (1 AL) + (1 AI) + (4 AR) + (5 GIT) + (2 HCI) +

(1 SDF) + (1 SE) + (1 MSF)

Interactive Computing

Platforms

 3 + (1 DM) + (2 GIT) + (1 AR) + (1 FPL)

SPD-SEP Included in SEP hours

Total 4

Note: The CS Core hours total includes 1 hour shared with SE.

Knowledge Units

SPD-Common: Common Aspects/Shared Concerns

CS Core:

1. Overview of development platforms (i.e., web, mobile, game, robotics, embedded, and interactive).

a. Input/sensors/control devices/haptic devices

b. Resource constraints

i. Computational

ii. Data storage

iii. Memory

iv. Communication

c. Requirements – security, uptime availability, fault tolerance (See also: SE-Reliability, SEC-

Engineering)

d. Output/actuators/haptic devices

2. Programming via platform-specific Application Programming Interface (API) vs traditional

application construction

3. Overview of platform Languages (e.g., Python, Swift, Lua, Kotlin)

4. Programming under platform constraints and requirements (e.g., available development tools,

development, security considerations) (See also: SEC-Foundations)

5. Techniques for learning and mastering a platform-specific programming language

Illustrative Learning Outcomes:

CS Core:

1. List the constraints of mobile programming.

2. List the characteristics of scripting languages.

3. Describe the three-tier model of web programming.

241

4. Describe how the state is maintained in web programming.

SPD-Web: Web Platforms

KA Core:

1. Web programming languages (e.g., HTML5, JavaScript, PHP, CSS)

2. Web platforms, frameworks, or meta-frameworks

a. Cloud services

b. API, Web Components

3. Software as a Service (SaaS)

4. Web standards such as document object model, accessibility (See also: HCI-Accessibility)

5. Security and Privacy Considerations (See also: SEP-Security)

Non-core:

6. Analyzing requirements for web applications

7. Computing services (See also: DM-NoSQL)

a. Cloud Hosting

b. Scalability (e.g., Autoscaling, Clusters)

c. Cost estimation for services

8. Data management (See also: DM-Core)

a. Data residency: where the data is located and what paths can be taken to access it

b. Data integrity: guaranteeing data is accessible and that data is deleted when required

9. Architecture

a. Monoliths vs Microservices

b. Micro-frontends

c. Event-Driven vs RESTful architectures: advantages and disadvantages

d. Serverless, cloud computing on demand

10. Storage solutions (See also: DM-Relational, DM-NoSQL)

a. Relational Databases

b. NoSQL databases

Illustrative Learning Outcomes:

KA Core:

1. Design and implement a web-based application using a microservice architecture design.

2. Describe the constraints, such as hosting, services, and scalability, related to web platforms.

3. Compare and contrast web programming with general-purpose programming.

4. Describe the differences between Software-as-a-Service (SaaS) and traditional software products.

5. Discuss how web standards impact software development.

6. Evaluate an existing web application against current web standards.

SPD-Mobile: Mobile Platforms

KA Core:

1. Development with

242

a. Mobile programming languages

b. Mobile programming environments

2. Mobile platform constraints

a. User interface design (See also: HCI-User)

b. Security

3. Access

a. Accessing data through APIs (See also: DM-Querying)

b. Designing API endpoints for mobile apps: pitfalls and design considerations

c. Network and web interfaces (See also: NC-Fundamentals, DM-Modeling)

Non-core:

4. Development

a. Native versus cross-platform development

b. Software design/architecture patterns for mobile applications (See also: SE-Design)

5. Mobile platform constraints

a. Responsive user interface design (See also: HCI-Accessibility)

b. Heterogeneity and mobility of devices

c. Differences in user experiences (e.g., between mobile and web-based applications)

d. Power and performance tradeoff

6. Mobile computing affordances

a. Location-aware applications

b. Sensor-driven computing (e.g., gyroscope, accelerometer, health data from a watch)

c. Telephony and instant messaging

d. Augmented reality (See also: GIT-Immersion)

7. Specification and testing (See also: SDF-Practices, SE-Validation)

8. Asynchronous computing (See also: PDC-Algorithms)

a. Difference from traditional synchronous programming

b. Handling success via callbacks

c. Handling errors asynchronously

d. Testing asynchronous code and typical problems in testing

Illustrative Learning Outcomes:

KA Core:

1. Compare mobile programming with general-purpose programming.

2. Develop a location-aware mobile application with data API integration.

3. Build a sensor-driven mobile application capable of logging data on a remote server.

4. Create a communication app incorporating telephony and instant messaging.

5. Evaluate the pros and cons of native and cross-platform mobile application development.

SPD-Robot: Robot Platforms

KA Core:

1. Types of robotic platforms and devices (See also: AI-Robotics)

2. Sensors, embedded computation, and effectors (actuators) (See also: GIT-Physical)

243

3. Robot-specific languages and libraries (See also: AI-Robotics)

4. Robotic software architecture (e.g., using the Robot Operating System (ROS))

5. Robotic platform constraints and design considerations (See also: AI-Robotics)

6. Interconnections with physical or simulated systems (See also: GIT-Physical, GIT-Simulation)

7. Robotic Algorithms (See also: AI-Robotics, GIT-Animation)

a. Forward kinematics

b. Inverse kinematics

c. Dynamics

d. Navigation and path planning

e. Grasping and manipulation

8. Safety and interaction considerations (See also: SEP-Professional-Ethics, SEP-Context)

Illustrative Learning Outcomes:

KA Core:

1. Design and implement an application on a given robotic platform.

2. Integrate an Arduino-based robot kit and program it to navigate a maze.

3. Compare robot-specific languages and techniques with those used for general-purpose software

development.

4. Explain the rationale behind the design of the robotic platform and its interconnections with physical

or simulated systems.

5. Given a high-level application, design a robot software architecture using ROS specifying all

components and interconnections (ROS topics) to accomplish that application.

6. Discuss the constraints a given robotic platform imposes on developers.

SPD-Embedded: Embedded Platforms

KA Core:

1. Introduction to the unique characteristics of embedded systems

a. Real-time vs soft real-time and non-real-time systems

b. Resource constraints, such as memory profiles and deadlines (See also: AR-Memory)

2. API for custom architectures

a. GPU technology (See also: AR-Heterogeneity, GIT-Shading)

b. Field Programmable Gate Arrays (FPGA) (See also: AR-Logic)

c. Cross-platform systems

3. Embedded Systems

a. Microcontrollers

b. Interrupts and feedback

c. Interrupt handlers in high-level languages (See also: SF-Overview)

d. Hard and soft interrupts and trap-exits (See also: OS-Principles)

e. Interacting with hardware, actuators, and sensors

f. Energy efficiency

g. Loosely timed coding and synchronization

h. Software adapters

4. Embedded programming

5. Hard real-time systems vs soft real-time systems (See also: OS-Real-time)

244

a. Timeliness

b. Time synchronization/scheduling

c. Prioritization

d. Latency

e. Compute jitter

6. Real-time resource management

7. Memory management

a. Mapping programming construct (variable) to a memory location (See also: AR-Memory)

b. Shared memory (See also: OS-Memory)

c. Manual memory management.

d. Garbage collection (See also: FPL-Translation)

8. Safety considerations and safety analysis (See also: SEP-Context, SEP-Professional-Ethics)

9. Sensors and actuators

10. Analysis and verification

11. Application design

Illustrative Learning Outcomes:

KA Core:

1. Design and implement a small embedded system for a given platform (e.g., a smart alarm clock or a

drone).

2. Describe the unique characteristics of embedded systems versus other systems.

3. Interface with sensors/actuators.

4. Debug a problem with an existing embedded platform.

5. Identify different types of embedded architectures.

6. Evaluate which architecture is best for a given set of requirements.

7. Design and develop software to interact with and control hardware.

8. Design methods for real-time systems.

9. Evaluate real-time scheduling and schedulability analysis.

10. Evaluate formal specification and verification of timing constraints and properties.

SPD-Game: Game Platforms

KA Core:

1. Historical and contemporary platforms for games (See also: AR-Logic)

a. Evolution of Game Platforms (e.g., Brown Box to Metaverse and beyond; Improvement in

Computing Architectures (CPU and GPU); Platform Convergence and Mobility)

b. Typical Game Platforms (e.g., Personal Computer; Home Console; Handheld Console;

Arcade Machine; Interactive Television; Mobile Phone; Tablet; Integrated Head-Mounted

Display; Immersive Installations and Simulators; Internet of Things enabled Devices; CAVE

Systems; Web Browsers; Cloud-based Streaming Systems)

c. Characteristics and Constraints of Different Game Platforms (e.g., Features (local storage,

internetworking, peripherals); Run-time performance (GPU/CPU frequency, number of

cores); Chipsets (physics processing units, vector co-processors); Expansion Bandwidth

(PCIe); Network throughput (Ethernet); Memory types and capacities (DDR/GDDR);

Maximum stack depth; Power consumption; Thermal design; Endian)

245

d. Typical Sensors, Controllers, and Actuators (e.g., distinctive control system designs –

peripherals (mouse, keypad, joystick), game controllers, wearables, interactive surfaces;

electronics and bespoke hardware; computer vision, inside-out tracking, and outside-in

tracking; IoT-enabled electronics and I/O (See also: GIT-Interaction)

e. eSports Ecosystems (e.g., evolution of gameplay across platforms; games and eSports;

game events such as LAN/arcade tournaments and international events such as the

Olympic eSports Series; streamed media and spectatorship; multimedia technologies and

broadcast management; professional play; data and machine learning for coaching and

training)

2. Real-time Simulation and Rendering Systems

a. CPU and GPU architectures (e.g., Flynn’s taxonomy; parallelization; instruction sets;

standard components – graphics compute array, graphics memory controller, video graphics

array basic input/output system; bus interface; power management unit; video processing

unit; display interface) (See also: AR-Heterogeneity)

b. Pipelines for physical simulations and graphical rendering: (e.g., tile-based, immediate-

mode). (See also: GIT-Rendering)

c. Common Contexts for Algorithms, Data Structures, and Mathematical Functions (e.g., game

loops; spatial partitioning, viewport culling, and level of detail; collision detection and

resolution; physical simulation; behavior for intelligent agents; procedural content

generation) (See also: MSF-Discrete, AL-Foundational)

d. Media representations (e.g., I/O, and computation techniques for virtual worlds: audio;

music; sprites; models and textures; text; dialogue; multimedia (e.g., olfaction, tactile) (See

also: GIT-Fundamentals)

3. Game Development Tools and Techniques

a. Programming Languages (e.g., C++; C#; Lua; Python; JavaScript)

b. Shader Languages (e.g., HLSL, GLSL; Shader Graph)

c. Graphics Libraries and APIs (e.g., DirectX; SDL; OpenGL; Metal; Vulkan; WebGL). (See

also: GIT-Rendering, HCI-Design)

d. Common Development Tools and Environments (e.g., IDEs; Debuggers; Profilers; Version

Control Systems including those handling binary assets; Development Kits and

Production/Consumer Kits; Emulators) (See also: SDF-Practices, SE-Tools)

4. Game Engines

a. Open Game Engines (e.g., Unreal; Unity; Godot; CryEngine; Phyre; Source 2; Pygame and

Ren’Py; Phaser; Twine; Spring RTS)

b. Techniques (e.g., Ideation, Prototyping, Iterative Design and Implementation, Compiling

Executable Builds, Development Operations and Quality Assurance – Play Testing and

Technical Testing, Profiling; Optimization, Porting; Internationalization and Localization,

Networking) (See also: AR-Performance-Energy, SE-Requirements)

5. Game Design

a. Vocabulary (e.g., game definitions; mechanics-dynamics-aesthetics model; industry

terminology; experience design; models of experience and emotion)

b. Design Thinking and User-Centered Experience Design (e.g., methods of designing games;

iteration, incrementing, and the double-diamond; phases of pre- and post-production; quality

246

assurance, including alpha and beta testing; stakeholder and customer involvement;

community management) (See also: SE-Design)

c. Genres (e.g., adventure; walking simulator; first-person shooter; real-time strategy;

multiplayer online battle arena (MOBA); role-playing game (rpg))

d. Audiences and Player Taxonomies (e.g., people who play games; diversity and broadening

participation; pleasures, player types, and preferences; Bartle, yee) (See also: HCI-User)

e. Proliferation of digital game technologies to domains beyond entertainment (e.g., Education

and Training; Serious Games; Virtual Production; eSports; Gamification; Immersive

Experience Design; Creative Industry Practice; Artistic Practice; Procedural Rhetoric) (See

also: AI-SEP)

Illustrative Learning Outcomes:

KA Core:

1. Recall the characteristics of common general-purpose graphics processing architectures.

2. Identify the key stages of the immediate-mode rendering pipeline.

3. Describe the key constraints a specific game platform will likely impose on developers.

4. Explain how eSports are streamed to large audiences over the internet.

5. Translate complex mathematical functions into performant source code.

6. Use an industry-standard graphics API to render a 3D model in a virtual scene.

7. Modify a shader to change a visual effect according to stated requirements.

8. Implement a game for a particular platform according to the specification.

9. Optimize a function for processing collision detection in a simulated environment.

10. Assess a game's run-time and memory performance using an industry-standard tool and

development environment.

11. Compare the interfaces of different game platforms, highlighting their respective implications for

human-computer interaction.

12. Recommend an appropriate set of development tools and techniques for implementing a game of a

particular genre for a given platform.

13. Discuss the key challenges in making a digital game that is cross-platform compatible.

14. Express how game developers can enhance the accessibility of a game interface.

15. Create novel forms of gameplay using frontier game platforms.

SPD-Interactive: Interactive Computing Platforms

Non-core:

1. Data Analysis Platforms

a. Jupyter notebooks; Google Colab; R; SPSS; Observable.

b. Cloud SQL/data analysis platforms (e.g., BigQuery) (See also: DM-Querying)

i. Apache Spark

ii. Data Visualizations (See also: GIT-Visualization)

c. Interactive presentations backed by data

d. Design tools requiring low-latency feedback loops

i. Rendering tools

ii. Graphic design tools

2. Prompt programming

247

a. Generative AI (e.g., OpenAI’s ChatGPT, OpenAI’s Codex, GitHub’s Copilot) and LLMs are

accessed/interacted

3. Quantum Platforms (See also: AR-Quantum)

a. Program quantum logic operators in quantum machines.

b. Use API for available quantum services

c. Signal analysis/Fourier analysis/Signal processing (for music composition, audio/RF

analysis) (See also: GIT-Image)

Illustrative Learning Outcomes:

Non-core:

1. Analyze large datasets interactively.

2. Create a backing track for a musical performance, such as live coding.

3. Create compelling computational notebooks that construct a narrative for a given journalistic

goal/story.

4. Implement interactive code that uses a dataset and generates exploratory graphics.

5. Create a program that performs a task using LLM systems.

6. Contrast a program developed by an AI platform and by a human.

7. Implement a system that interacts with a human without using a screen.

8. Contextualize the attributes of different data analysis styles, such as interactive vs engineered

pipeline.

9. Write a program using a notebook computing platform (e.g., searching, sorting, or graph

manipulation).

10. Demonstrate a quantum gate outcome using a quantum platform.

SPD-SEP/Mobile

Non-core:

1. Privacy and data protection

2. Accessibility in mobile design

3. Security and cybersecurity

4. Social impacts of mobile technology

5. Ethical use of AI and algorithms

Illustrative Learning Outcomes:

Non-core:

1. Understand and uphold ethical responsibilities for safeguarding user privacy and data protection in

mobile applications.

2. Design mobile applications with accessibility in mind, ensuring effective use by people with

disabilities.

3. Demonstrate proficiency in secure coding practices to mitigate risks associated with various security

threats in mobile development.

4. Analyze the broader social impacts of mobile technology, including its influence on communication

patterns, relationships, and mental health.

5. Comprehend the ethical considerations of using AI in mobile applications, ensuring unbiased and

fair algorithms.

248

SPD-SEP/Web

Non-core:

1. Privacy concerns with mobile apps

2. Designing for inclusivity and accessibility

3. Ethical use of AI in mobile apps

4. Sustainable app development and server hosting

5. Avoiding spam or intrusive notifications

6. Addressing cyberbullying and harassment

7. Promoting positive online communities

8. Monetization and advertising

9. Ethical use of gamification

Illustrative Learning Outcomes:

Non-core:

1. Understand how mobile computing impacts communications and the flow of information within

society.

2. Design mobile apps that have made daily tasks easier/faster.

3. Recognize how the ubiquity of mobile computing has affected work-life balance.

4. Understand how mobile computing impacts health monitoring and healthcare services.

5. Define how mobile apps are used to educate about and help achieve UN sustainability goals.

SPD-SEP/Game

Non-core:

1. Intellectual Property Rights in Creative Industries

a. Intellectual Property Ownership: copyright, trademark; design right, patent, trade secret, civil

versus criminal law; international agreements; procedural content generation and the

implications of generative artificial intelligence

b. Licensing: Usage and fair usage exceptions; open-source license agreements; proprietary

and bespoke licensing; enforcement

2. Fair Access to Play

a. Game Interface Usability: user requirements, affordances, ergonomic design, user research,

experience measurement, and heuristic evaluation methods for games

b. Game Interface Accessibility: forms of impairment and disability; means to facilitate game

access; universal design; legislated requirements for game platforms; compliance

evaluation; challenging game mechanics and access

3. Game-Related Health and Safety

a. Injuries in Play: ways of mitigating common upper body injuries, such as repetitive strain

injury; exercise psychology and physiotherapy in eSports

b. Risk Assessment for Events and Manufacturing: control of substances hazardous to health

(COSHH); fire safety; electrical and electronics safety; risk assessment for games and game

events; risk assessment for manufacturing

c. Mental Health: motivation to play; gamification and gameful design; game psychology –

internet gaming disorder

249

4. Platform Hardware Supply Chain and Sustainability

a. Platform Lifecycle: platform composition – materials, assembly; mineral excavation and

processing; power usage; recycling; planned obsolescence.

b. Modern Slavery: supply chains; forced labor and civil rights; working conditions; detection

and remission; certification bodies and charitable endeavors.

5. Representation in the Media and Industry

a. Inclusion: identity and identification; inclusion of a broad range of characters for diverse

audiences; media representation and its effects; media literacy; content analysis;

stereotyping; sexualization

b. Equality: histories and controversies, such as gamergate, quality of life in the industry,

professional discourse and conduct in business contexts, pathways to game development

careers, social mobility, the experience of developers from different backgrounds and

identities, gender, and technology

Illustrative Learning Outcomes:

Non-core:

1. Discuss how creators can protect their intellectual property.

2. Identify common pitfalls in game interfaces that exclude players with impaired or non-functional

vision.

3. Describe how heuristic evaluation can be used to identify usability problems in game interfaces.

4. Explain why upper body injuries are common in eSports.

5. Discuss how to reform characters and dialogues in a scene to reduce stereotype threat.

6. Illustrate how the portrayal of race in a game can influence the risk of social exclusion in the

associated online community around the game.

7. Modify a policy for a LAN party event to include mitigations that lower the risk of fire.

8. Design a gamification strategy to motivate serious play for an awareness-raising game.

9. Analyze the role of company hiring policies and advocacy on social mobility.

10. Assess the appropriateness of two manufacturers for producing a new game console.

11. Compare options for open-source licensing of a game development tool.

12. Recommend changes to a specific game interface to improve access to players who are deaf or

whose hearing is otherwise impaired.

13. Discuss whether games are addictive.

14. Suggest how the portrayal of women in video games influences how players perceive members of

those groups.

15. Create a video game that successfully advocates for climate science.

SPD-SEP/Robotics

Non-core:

1. Fairness, transparency, and accountability in robotic algorithms

2. Mitigating biases in robot decision-making

3. Public safety in shared spaces with robots

4. Compliance with data protection laws

5. Patient consent and trust in medical robots

250

Illustrative Learning Outcomes:

Non-core:

1. Identify instances of bias in robotic algorithms and propose strategies to mitigate them.

2. Evaluate and critique robotic systems for ethical and fairness considerations, suggesting

improvements where necessary.

3. Analyze real-world examples of biases in robot decision-making and develop strategies to reduce

bias in robotic systems.

4. Assess the potential risks associated with robots in public spaces and propose safety measures to

mitigate those risks.

5. Evaluate the impact of patient consent and trust on the effectiveness of medical robot deployments

in healthcare contexts.

SPD-SEP/Interactive

Non-core:

1. Ethical guidelines when using AI models to assist in journalism and content creation

2. Accountability for AI-generated outputs

3. Behavior among prompt programmers and AI developers

4. Trust with the public when using AI models

Illustrative Learning Outcomes:

Non-core:

1. Indicate a framework for accountability in AI model deployment, including clear documentation and

attribution.

2. Discuss ethical codes of conduct and professional standards relevant to prompt programming and

AI development.

3. Create communication plans and materials to educate the public about AI capabilities, limitations,

and ethical safeguards.

Professional Dispositions

● Self-Directed: Students should be able to learn new platforms and languages with a growth-

oriented mindset and thrive in dynamic environments, while continually enhancing skills.

● Inventive: Students should demonstrate excellence in designing software architecture within

unconventional constraints, emphasizing adaptability and creative problem-solving for innovative

solutions.

● Adaptable: Students should adapt to diverse challenges, showing resilience, open-mindedness,

and a proactive approach to changing requirements and constraints.

Mathematics Requirements

Required:

● MSF-Discrete

Desired:

251

● MSF-Calculus

● MSF-Linear

● MSF-Statistics

Course Packaging Suggestions

Introduction to Special Platform Development Course to include the following:

● SPD-Common (10 hours)

● SPD-Web (4 hours)

● SPD-Mobile (4 hours)

● SPD-SEP/Robotics (3 hours)

● SPD-Embedded (3 hours)

● SPD-Game (4 hours)

● SPD-SEP/Interactive (2 hours)

● SEP-Context (2 hours)

● SDF-Practices (4 hours)

● SE-Design (2 hours)

● FPL-Scripting (2 hours)

Course objectives: Students should be able to grasp common aspects of platform development,

acquire foundational knowledge in web development, and attain proficiency in web techniques. They

will apply comprehensive mobile development skills and explore challenges in robotics platforms.

252

Expertise in developing platforms for embedded systems, along with skills in game development and

creating interactive platforms, will be developed. Students will analyze societal, ethical, and

professional implications of platform development, fostering a well-rounded understanding of this field

within a concise curriculum.

Mobile Development Course to include the following:

● SPD-Common: Common Aspects (3 hours)

● SPD-Mobile (25 hours)

● SDF-Practices: Software Development Practices (2 hours)

● SE-Design: Software Design (3 hours)

● SE-Construction: Software Construction (2 hours)

● SPD-SEP/Mobile (3 hours)

Course objectives: Students should be able to design, develop, and deploy cross-platform mobile

applications using languages like Java, Kotlin, Swift, or React Native. Proficiency in implementing user

experience best practices, exploring cross-platform development tools, and utilizing platform-specific

APIs for seamless integration is emphasized. The course covers security vulnerability identification,

testing methodologies, and distribution/versioning of mobile applications. Students gain insights into

user behavior and application performance through analytics tools. Additionally, they learn version

control, release management, and ethical considerations relevant to mobile development, providing a

well-rounded skill set for successful and responsible mobile application development across diverse

platforms.

Web Development Course to include the following:

● SPD-Web (19 hours)

● FPL-OOP (3 hours)

● SE-Construction (2 hours)

● DM-Querying (2 hours)

● SE-Tools (4 hours)

● SDF-Practices (4 hours)

● SE-Design (2 hours)

● FPL-Scripting (2 hours)

● SPD-SEP/Web (2 hours)

Course objectives: Students should be able to gain expertise in designing, developing, and deploying

modern web applications. The curriculum covers key concepts, ensuring proficiency in HTML, CSS,

and JavaScript for responsive and visually appealing pages. Students explore and implement frontend

frameworks (e.g., React, Angular) for efficient development, understand server-side languages (e.g.,

Node.js, Python) for dynamic applications, and design effective architectures prioritizing scalability and

security. They learn version control (e.g., GIT), integrate APIs for enhanced functionality, implement

responsive design, optimize for performance, and ensure security through best practices. Testing,

debugging, accessibility, deployment, and staying current with industry trends are also emphasized.

Game Development Course to include the following:

253

● SPD-Game (16 hours)

● SPD-SEP/Game (4 hours)

● SDF-Practices (4 hours)

● GIT-Interaction (1 hour)

● HCI-Design (3 hours)

● HCI-User (1 hour)

● SE-Tools (1 hour)

● AL-Foundational (2 hours)

● GIT-Rendering (4 hours)

● SE-Design (4 hours)

Course objectives: Students should be able to master designing, developing, and deploying

interactive games. The curriculum covers fundamental game design principles, proficiency in languages

like C++, C#, or Python, and utilization of popular engines such as Unity or Unreal. Students gain 3D

modeling and animation skills, implement physics and simulations for realism, and create AI algorithms

for intelligent non-player characters. They design multiplatform games, optimize UI/UX for engagement,

apply game-specific testing and debugging techniques, integrate audio effectively, and explore industry

monetization models. The course emphasizes ethical considerations, ensuring students analyze and

address content, diversity, and inclusivity in game development.

Committee

Chair: Christian Servin, El Paso Community College, El Paso, TX, USA

Members:

● Sherif G. Aly, The American University in Cairo, Cairo, Egypt

● Yoonsik Cheon, The University of Texas at El Paso, El Paso, TX, USA

● Eric Eaton, University of Pennsylvania, Philadelphia, PA, USA

● Claudia L. Guevara, Jochen Schweizer mydays Holding GmbH, Munich, Germany

● Larry Heimann, Carnegie Mellon University, Pittsburgh, PA, USA

● Amruth N. Kumar, Ramapo College of New Jersey, Mahwah, NJ, USA

● R. Tyler Pirtle, Google, USA

● Michael James Scott, Falmouth University, Falmouth, Cornwall, UK

Contributors:

● Sean R. Piotrowski, Rider University, Lawrenceville, NJ, USA

● Mark O’Neil, Blackboard Inc., Newport, NH, USA

● John DiGennaro, Qwickly, Cleveland, OH, USA

● Rory K. Summerley, London South Bank University, London, England, UK

254

255

Core Topics Table

In the following seventeen tables, CS and KA core topics have been listed, one table per knowledge

area. For each topic, desired skill levels have been identified and used to estimate the time needed for

the instruction of CS Core and KA Core topics. The skill levels should be treated as recommended, not

prescriptive. The time needed to cover CS Core and KA Core topics is expressed in terms of

instructional hours. Instructional hours are hours spent in the classroom imparting knowledge

regardless of the pedagogy used. Students are expected to spend additional time after class practicing

related skills and exercising professional dispositions.

For convenience, the tables have been listed under three competency areas: Software, Systems, and

Applications. The tables on Society, Ethics, and the Profession (SEP) and Mathematical and Statistical

Foundations (MSF) are listed last as crosscutting topics that apply to all the competency areas.

Software Competency Area

The core topics in Software Development Fundamentals (SDF) and Algorithmic Foundations (AL)

typically constitute the introductory course sequence in computer science and have been listed first.

 Knowledge Area Knowledge Units CS Core KA Core

SDF Software Development Fundamentals 5 43

AL Algorithmic Foundations 5 32 32

FPL Foundations of Programming Languages 22 21 19

SE Software Engineering 9 6 21

 Total 102 72

SDF: Software Development Fundamentals

KU Topic Skill Level Core Hours

SDF-

Fundamentals

1. Basic concepts such as variables, primitive

data types, and expression evaluation

2. How imperative programs work: state and

state transitions on execution of statements,

flow of control

3. Basic constructs such as assignment

statements, conditional and iterative

Develop CS 18

256

statements, basic I/O

4. Key modularity constructs such as functions

and related concepts like parameter passing,

scope, abstraction, data encapsulation, etc.

5. Input and output using files and APIs

6. Structured data types available in the chosen

programming language like sequences,

associative containers, others and when and

how to use them

7. Libraries and frameworks provided by the

language (when/where applicable)

8. Recursion

SDF-

Fundamentals

9. Dealing with runtime errors in programs

10. Basic concepts of programming errors, testing,

and debugging

11. Documenting/commenting code at the

program and module level

Evaluate

Apply

CS 2

SDF-Data-

Structures

Standard abstract data types such as lists, stacks,

queues, sets, and maps/dictionaries and

operations on the data types

4. Strings and string processing

Develop CS 10

SDF-Data-

Structures

Selecting and using appropriate data structures

Performance implications of choice of data

structure(s)

Evaluate CS 2

SDF-Algorithms Concept of algorithm and notion of algorithm

efficiency

Some common algorithms (e.g., sorting,

searching, tree traversal, graph traversal)

Impact of algorithms on time/space efficiency of

programs

Explain CS 6

SDF-Practices Basic testing including test case design

Specifying functionality of a module in a natural

language

Develop CS 3

SDF-Practices 3. Programming style that improves readability Evaluate CS 1

SDF-Practices Use of a general-purpose IDE, including its

debugger

Apply CS 1

257

AL: Algorithmic Foundations

KU Topic Skill Level Core Hours

AL-

Foundational

AL-

Complexity

2. Arrays

 1. Abstract Data Types and Operations

 2b i. Foundational Complexity Classes: Constant

 CS 1

AL-

Foundational

AL-

Complexity

AL-

Strategies

11a. Search Algorithms O(n) (e.g., linear array

search)

 2b iii. Foundational Complexity Classes: Linear

 1a. Brute Force

Apply

Evaluate

Explain

CS 1

AL-

Foundational

AL-

Complexity

AL-

Strategies

12a. Sorting O(n2), (e.g., selection sort of an array)

 2b v. Foundational Complexity classes: Quadratic

 1a. Brute Force

Apply

Evaluate

Explain

CS 1

AL-

Foundational

AL-

Complexity

AL-Strategies

11b. Search O(log2 n), (e.g., Binary search of an

array)

 2b ii. Foundational Complexity Classes: Logarithmic

 1b ii. Decrease-and-Conquer

Apply

Evaluate

Explain

CS 1

AL-

Foundational

AL-

Complexity

AL-Strategies

12b. Sorting O(n log n), (e.g., Quick, Merge, Tim)

 2b iv. Foundational Complexity Classes: Log Linear

 1c. Divide-and-Conquer

Apply

Evaluate

Explain

CS 1

AL-

Foundational

AL-

Complexity

AL-Strategies

4. Linked Lists

 1. Abstract Data Types and Operations

 11a. Search O(n), (e.g., linear linked list search)

 2b iii. Foundational Complexity Classes: Linear

 1a. Brute Force

Explain

Apply

Apply

Evaluate

Explain

CS 1

AL-

Foundational

AL-

Complexity

AL-

5. Stacks

 1. Abstract Data Types and Operations

 2b i. Foundational complexity classes: Constant

6. Queues and Deques

 1. Abstract Data Types and Operations

Explain,

Apply

Explain,

Apply

CS 1

258

Foundational

AL-

Foundational

AL-

Complexity

AL-Strategies

7. Hash Tables/Maps

 7a. Collision resolution and complexity

 1. Abstract Data Types and Operations

 2b i. Foundational complexity classes: Constant

 1f. Time vs Space tradeoff

Explain

Explain

Apply

Explain

Explain

CS 1

1

AL-

Foundational

AL-Strategies

AL-

Foundational

AL-Strategies

9. Trees

 1. Abstract Data Types and Operations

 11c. Search Algorithms DFS/BFS

 2b. Decrease-and-Conquer

 9b. Balanced Trees (e.g., AVL, 2-3, Red-Black,

Heap)

 1e ii. Transform-and-Conquer: Representation

 Change (e.g., heapsort)

Explain

Apply

Apply

Explain

Apply

Explain

CS 1

3

AL-

Foundational

AL-

Foundational

AL-Strategies

8. Graphs (e.g., [un]directed, [a]cyclic, [un]connected,

 [un]weighted)

 8a. Representation: Adjacency List vs Matrix

13. Graph Algorithms

 13a. Shortest Path (e.g., Dijkstra’s, Floyd’s)

 13b. Minimal, spanning tree (e.g., Prim’s,

Kruskal’s)

1d. Greedy

1e. iv. Dynamic Programming

Explain

Apply

Apply

Explain

CS 1

4

AL-

Foundational

1. Abstract Data Types and Operations

3. Records/Structures/Tuples and Objects

10. Sets

Explain CS 1

AL-Strategies

AL-Strategies

AL-Strategies

AL-Strategies

1. Paradigms (demonstrated in AL-Foundational)

 1a. Brute-Force

 1b. Decrease-and-Conquer

 1c. Divide-and-Conquer

 1f. Time-Space Tradeoff

3. Iteration vs Recursion

1e. Transform-and-Conquer

 1e i. Instance Simplification (e.g., pre-sorting)

 1e iii. Problem Reduction (e.g.,

 least-common-multiple)

2. Handling Exponential Growth

 (e.g., heuristic A*, backtracking, ranch-and-bound

1e iv. Dynamic Programming

Explain

Explain

Explain

Explain

CS 3

1

1

1

259

 (e.g., Bellman-Ford, Knapsack, Floyd,

Warshall)

AL-

Complexity

AL-

Complexity

AL-Strategies

AL-

Complexity

1. Complexity Analysis Framework

2. Asymptotic Complexity Analysis

 2a. Big O, Big Omega, and Big Theta

 2b. Foundational complexity classes

demonstrated by AL-Foundational algorithms (with

complexity): Constant, Logarithmic, Linear, Log

Linear, Quadratic, and Cubic

4. Tractability and Intractability

 4a. P, NP, and NP-C complexity classes

 4b. NP-Complete Problems

 (e.g., SAT, Knapsack, TSP)

 4c. Reductions

1a. Paradigms: Exhaustive brute force

1e. iv. Dynamic Programming

2 vii. Foundational Complexity Classes: Exponential

2b viii. Factorial complexity classes: Factorial O(n!)

 (e.g. All Permutations, Hamiltonian Circuit)

Explain

Explain

Evaluate

Explain

Explain

Explain

CS 1

1

2

1

1

AL-Models 1. Formal Automata

 1a. Finite State Automata

 2a. Regular language, grammar, and expressions

1b. Pushdown Automata

 2b. Context-Free language and grammar

1d. Turing Machine

 2d. Recursively Enumerable language and

grammar

 1c. Linear-Bounded

 2c. Context-Sensitive language and grammar

2. Formal Languages and Grammars

4. Decidability, Computability, Halting problem

5. The Church-Turing Thesis

6. Algorithmic Correctness

 Invariants (e.g., in iteration, recursion, sorting,

heaps)

Explain,

Apply

Explain,

Apply

Explain

Explain

Explain

Explain

Explain

Explain

CS 1

1

3

1

2

1

AL-SEP 1. Social, Ethical, and Secure Algorithms

2. Algorithmic Fairness (e.g., differential privacy)

3. Accountability/Transparency

4. Responsible algorithms

5. Economic and other impacts of algorithms

6. Sustainability

Explain CS In

SEP

Hours

260

FPL: Foundations of Programming Languages

KU Topic Skill

Level

Core Hours

FPL-OOP 1. Imperative programming as a subset of object-

oriented programming

2. Object-oriented design

a. Decomposition into objects carrying state and

having behavior

b. Class-hierarchy design for modeling

3. Definition of classes: fields, methods, and

constructors

4. Subclasses, inheritance (including multiple

inheritance), and method overriding

5. Dynamic dispatch – definition of method-call

6. Exception handling

7. Object-oriented idioms for encapsulation

a. Privacy, data hiding, and visibility of class

members

b. Interfaces revealing only method signatures

c. Abstract base classes, traits and mixins

8. Dynamic vs static properties

9. Composition vs inheritance

10. Subtyping

a. Subtype polymorphism; implicit upcasts in typed

languages

b. Notion of behavioral replacement – subtypes

acting like supertype

c. Relationship between subtyping and inheritance

Develop CS 1. 5

 11. Collection classes, iterators, and other common

library components

12. Metaprogramming and reflection

Develop KA 1

FPL-

Functional

1. Lambda expressions and evaluation

a. Variable binding and scope rules

b. Parameter-passing

c. Nested lambda expressions and reduction order

2. Effect-free programming

a. Function calls have no side effects, facilitating

compositional reasoning.

b. Immutable variables and data copying vs

reduction

Develop CS 4

261

c. Use of recursion vs loops vs pipelining

(map/reduce)

3. Processing structured data (e.g., trees) via functions

with cases for each data variant

a. Functions defined over compound data in terms

of functions applied to the constituent pieces

b. Persistent data structures

4. Using higher-order functions (taking, returning, and

storing functions)

 5. Metaprogramming and reflection

6. Function closures (functions using variables in the

enclosing lexical environment)

a. Basic meaning and definition – creating closures

at run-time by capturing the environment

b. Canonical idioms: call-backs, arguments to

iterators, reusable code via function arguments

c. Using a closure to encapsulate data in its

environment

d. Lazy vs eager evaluation

Explain KA 3

FPL-Logic 1. Universal vs existential quantifiers

2. First order predicate logic vs higher order logic

3. Expressing complex relations using logical

connectives and simpler relations

4. Definitions of Horn clause, facts, goals and subgoals

5. Unification and unification algorithm; unification vs

assertion vs expression evaluation

6. Mixing relations with functions

7. Cuts, backtracking, and non-determinism

8. Closed-world vs open-world assumptions

Explain KA 3

FPL-

Scripting

1. Error/exception handling

2. Piping

3. System commands

a. Interface with operating systems

4. Environment variables

5. File abstraction and operators

6. Data structures, such as arrays and lists

7. Regular expressions

8. Programs and processes

9. Workflow

Develop CS 2

FPL-Event-

Driven

1. Procedural programming vs reactive programming –

advantages of reactive programming in capturing

Develop CS 2

262

events

2. Components of reactive programming – event-

source, event signals, listeners and dispatchers,

event objects, adapters, event-handlers

3. Stateless and state-transition models of event-based

programming

4. Canonical uses such as GUIs, mobile devices,

robots, servers

 5. Using a reactive framework

a. Defining event handlers/listeners

b. Parameterization of event senders and event

arguments

c. Externally generated events and program-

generated events

6. Separation of model, view, and controller

7. Event-driven and reactive programs as state-

transition systems

Develop KA 2

FPL-

Parallel

1. Safety and liveness

a. Race conditions.

b. Dependencies/preconditions

c. Fault models

d. Termination

2. Programming models: One or more of the following

a. Actor models

b. Procedural and reactive models

c. Synchronous/asynchronous programming

models

d. Data parallelism

3. Properties

a. Order-based properties

i. Commutativity

ii. Independence

b. Consistency-based properties

i. Atomicity

ii. Consensus

4. Execution control:

a. Async await

b. Promises

c. Threads

5. Communication and coordination

a. Mutexes

b. Message-passing

Develop CS 3

263

c. Shared memory

d. Cobegin-coend

e. Monitors

f. Channels

g. Threads

h. Guards

 6. Futures

7. Language support for data parallelism such as forall,

loop unrolling, map/reduce

8. Effect of memory-consistency models on language

semantics and correct code generation

9. Representational State Transfer Application

Programming Interfaces (REST APIs)

10. Technologies and approaches: cloud computing,

high performance computing, quantum computing,

ubiquitous computing

11. Overheads of message-passing

12. Granularity of program for efficient exploitation of

concurrency

13. Concurrency and other programming paradigms

(e.g., functional)

Explain KA 2

FPL-Types 1. A type as a set of values together with a set of

operations

a. Primitive types (e.g., numbers, Booleans)

b. Compound types built from other types (e.g.,

records/structs, unions, arrays, lists, functions,

references using set operations)

2. Association of types to variables, arguments, results,

and fields

3. Type safety as an aspect of program correctness

4. Type safety and errors caused by using values

inconsistently given their intended types

5. Goals and limitations of static and dynamic typing

a. Detecting and eliminating errors as early as

possible

6. Generic types (parametric polymorphism)

a. Definition and advantages of polymorphism –

parametric, subtyping, overloading, and coercion

b. Comparison of monomorphic and polymorphic

types

c. Comparison with ad-hoc polymorphism

(overloading) and subtype polymorphism

Develop CS 3

264

d. Generic parameters and typing

e. Use of generic libraries such as collections

f. Comparison with ad hoc polymorphism

(overloading) and subtype polymorphism

g. Prescriptive vs descriptive polymorphism

h. Implementation models of polymorphic types

i. Subtyping

 7. Type equivalence – structural vs name equivalence

8. Complementary benefits of static and dynamic typing

a. Errors early vs errors late/avoided

b. Enforce invariants during code development and

code maintenance vs postpone typing decisions

while prototyping and conveniently allow flexible

coding patterns such as heterogeneous

collections

c. Typing rules

i. Rules for function, product, and sum types

d. Avoid misuse of code vs allow more code reuse

e. Detect incomplete programs vs allow incomplete

programs to run

f. Relationship to static analysis

g. Decidability

Develop KA 4

FPL-

Systems

1. Data structures for translation, execution, translation,

and code mobility such as stack, heap, aliasing

(sharing using pointers), indexed sequence and

string

2. Direct, indirect, and indexed access to memory

location

3. Run-time representation of data abstractions such as

variables, arrays, vectors, records, pointer-based

data elements such as linked-lists and trees, and

objects

4. Abstract low-level machine with simple instruction,

stack, and heap to explain translation and execution

5. Run-time layout of memory: activation record (with

various pointers), static data, call-stack, heap

a. Translating selection and iterative constructs to

control-flow diagrams

b. Translating control-flow diagrams to low level

abstract code

c. Implementing loops, recursion, and tail calls

d. Translating function/procedure calls and return

Develop CS 3

265

from calls, including different parameter-passing

mechanisms using an abstract machine

6. Memory management

a. Low level allocation and accessing of high-level

data structures such as basic data types, n-

dimensional array, vector, record, and objects

b. Return from procedure as automatic

deallocation mechanism for local data elements

in the stack

c. Manual memory management: allocating, de-

allocating, and reusing heap memory

d. Automated memory management – garbage

collection as an automated technique using the

notion of reachability

7. Green computing

FPL-

Translation

1. Execution models for JIT (Just-In-Time), compiler,

interpreter

2. Use of intermediate code, e.g., bytecode.

3. Limitations and benefits of JIT, compiler, and

interpreter

4. Cross compilers/transpilers

5. BNF and extended BNF representation of context-

free grammar

6. Parse tree using a simple sentence such as

arithmetic expression or if-then-else statement

7. Execution as native code or within a virtual machine

8. Language translation pipeline – syntax analysis,

parsing, optional type-checking, translation/code

generation and optimization, linking, loading,

execution

Explain CS 2

 9. Run-time representation of core language

constructs such as objects (method tables) and

first-class functions (closures)

10. Secure compiler development

Explain KA 2

FPL-

Abstraction

1. BNF and regular expressions

2. Programs that take (other) programs as input such

as interpreters, compilers, type-checkers,

documentation generators

3. Components of a language

a. Definitions of alphabets, delimiters, sentences,

syntax, and semantics

Explain KA 3

266

b. Syntax vs semantics

4. Program as a set of non-ambiguous meaningful

sentences

5. Basic programming abstractions – constants,

variables, declarations (including nested

declarations), command, expression, assignment,

selection, definite and indefinite iteration, iterators,

function, procedure, modules, exception handling

6. Mutable vs immutable variables: advantages and

disadvantages of reusing existing memory location

vs advantages of copying and keeping old values;

storing partial computation vs recomputation

7. Types of variables – static, local, nonlocal, global;

need and issues with nonlocal and global variables

8. Scope rules – static vs dynamic; visibility of

variables; side-effects

9. Side-effects induced by nonlocal variables, global

variables, and aliased variables

SE: Software Engineering

KU Topic Skill

Level

Core Hours

SE-Teamwork 1. Effective communication

2. Common causes of team conflict, and approaches

for conflict resolution

3. Cooperative programming

4. Roles and responsibilities in a software team

5. Team processes

6. Importance of team diversity and inclusion

Evaluate

CS

2

SE-Teamwork 7. Interfacing with stakeholders, as a team

8. Risks associated with physical, distributed, hybrid

and virtual teams

Explain

KA

2

SE-Tools 1. Software configuration management and version

control

Evaluate CS 1

SE-Tools 2. Release management

3. Testing tools including static and dynamic analysis

tools

4. Software process automation

Explain

KA

3

267

5. Design and communication tools (docs, diagrams,

common forms of design diagrams like UML)

6. Tool integration concepts and mechanisms

7. Use of modern IDE facilities – debugging,

refactoring, searching/indexing, etc.

SE-

Requirements

1. Describe functional requirements using, for

example, use cases or user stories

2. Properties of requirements including consistency,

validity, completeness, and feasibility

3. Requirements elicitation

4. Non-functional requirements, for example, security,

usability, or performance (aka Quality Attributes)

5. Risk identification and management

6. Communicating and/or formalizing requirement

specifications

Apply

KA

2

SE-Design 1. System design principles

2. Software architecture

3. Programming in the large vs programming in the

small

4. Code smells and other indications of code quality,

distinct from correctness.

Explain CS 1

SE-Design 5. API design principles

6. Identifying and codifying data invariants and time

invariants

7. Structural and behavioral models of software

designs

8. Data design

9. Requirement traceability

Apply KA 4

SE-

Construction

1. Practical small-scale testing

2. Documentation

Apply CS 1

SE-

Construction

3. Coding Style

4. “Best Practices” for coding

5. Debugging

6. Logging

7. Use of libraries and frameworks developed by

others

Apply KA 3

SE-Validation 1. Verification and validation concepts

2. Why testing matters

3. Testing objectives

Explain CS 1

268

4. Test kinds

5. Stylistic differences between tests and production

code

SE-Validation 6. Test planning and generation

7. Test development (see SDF)

8. Verification and validation in the development cycle

9. Domain specific verification and validation

challenges

Explain KA 4

SE-

Refactoring

1. Hyrum’s Law

2. Backward Compatibility

3. Refactoring

4. Versioning

Explain KA 1

SE-Reliability 1. Concept of reliability

2. Identifying reliability requirements (see SEP)

3. Software failures vs defect injection/detection

4. Software reliability, system reliability and failure

behavior (cross-reference SF/Reliability Through

Redundancy)

5. Defect injection and removal cycle, and different

approaches for defect removal

6. Compare the “error budget” approach to reliability

with the “error-free” approach, and identify domains

where each is relevant

Explain KA 4

Systems Competency Area

The core topics in Architecture and Organization (AR) and Operating Systems (OS) are typically

covered early in the curriculum and have been listed first. Data Management (DM) and Security (SEC)

topics listed in this section can be applied to all three competency areas.

 Knowledge Area Knowledge Units CS Core KA Core

AR Architecture and Organization 9 9 16

OS Operating Systems 14 8 13

NC Networking and Communication 8 7 24

PDC Parallel and Distributed Computing 5 9 26

269

SF Systems Fundamentals 8 18 8

DM Data Management 12 10 26

SEC Security 6 6 35

 Total 67 148

AR: Architecture and Organization

KU Topic Skill

Level

Core Hours

AR-Logic

1. Combinational vs sequential logic/field

programmable gate arrays (FPGAs)

a. Fundamental combinational

b. Sequential logic building block

Explain

KA

3

2. Computer-aided design tools that process

hardware and architectural representations

3. High-level synthesis

a. Register transfer notation

b. Hardware description language (e.g.,

Verilog/VHDL/Chisel)

4. System-on-chip (SoC) design flow

5. Physical constraints

a. Gate delays

b. Fan-in and fan-out

c. Energy/power

d. Speed of light

Evaluate

AR-

Representatio

n

1. Overview and history of computer architecture

2. Bits, bytes, and words

3. Unsigned, signed and two’s complement

representations

4. Numeric data representation and number bases

a. Fixed-point

b. Floating-point

5. Representation of non-numeric data

6. Representation of records, arrays and UTF data

types

Apply CS 1

AR-Assembly 1. von Neumann machine architecture Explain CS 1

270

2. Control unit: instruction fetch, decode, and

execution

3. Introduction to SIMD vs MIMD and the Flynn

taxonomy

4. Shared memory multiprocessors/multicore

organization

AR-Assembly 5. Instruction set architecture (ISA) (e.g., x86, ARM,

and RISC-V)

a. Instruction formats

b. Data manipulation, control, I/O

c. Addressing modes

d. Machine language programming

e. Assembly language programming

6. Subroutine call and return mechanisms

7. I/O and interrupts

8. Heap, static, stack, and code segments

Develop KA 2

AR-Memory

1. Memory hierarchy: the importance of temporal and

spatial locality

2. Main memory organization and operations

3. Persistent memory (e.g., SSD, standard disks)

4. Latency, cycle time, bandwidth, and interleaving

7. Virtual memory (hardware support)

8. Fault handling and reliability

9. Reliability

a. Error coding

b. Data compression

c. Data integrity

10. In-Memory Processing (PIM)

Explain

CS

6

5. Cache memories

a. Address mapping

b. Block size

c. Replacement and store policy

6. Multiprocessor cache coherence

Evaluate

1. I/O fundamentals

a. Handshaking and buffering

b. Programmed I/O

c. Interrupt-driven I/O

2. Interrupt structures: vectored and prioritized,

interrupt acknowledgment

Explain CS 1

271

AR-IO 3. I/O devices (e.g., mouse, keyboard, display,

camera, sensors, actuators)

4. External storage, physical organization, and drives

5. Bus fundamentals

a. Bus protocols

b. Arbitration

c. Direct-memory access (DMA)

AR-

Organization

1. Implementation of simple datapaths, including

instruction pipelining, hazard detection, and

resolution

2. Control unit

a. Hardwired implementation

b. Microprogrammed realization

Develop

KA

2
3. Instruction pipelining

4. Introduction to instruction-level parallelism (ILP)

Explain

AR-

Performance-

Energy

1. Performance-energy evaluation (introduction):

performance, power consumption, memory, and

communication costs

2. Branch prediction, speculative execution, out-of-

order execution, Tomasulo's algorithm

Evaluate

KA

2

AR-

Performance-

Energy

3. Enhancements for vector processors and GPUs

4. Hardware support for multithreading

a. Race conditions

b. Lock implementations

c. Point-to-point synchronization

d. Barrier implementation

5. Scalability

6. Alternative architectures, such as VLIW/EPIC,

accelerators, and other special-purpose processors

7. Dynamic voltage and frequency scaling (DVFS)

8. Dark Silicon

Explain KA 1

AR-

Heterogeneity

1. SIMD and MIMD architectures (e.g., General-

Purpose GPUs, TPUs, and NPUs)

2. Heterogeneous memory system

a. Shared memory versus distributed memory

b. Volatile vs non-volatile memory

c. Coherence protocols

3. Domain-Specific Architectures (DSAs)

a. Machine Learning Accelerator

Explain KA 2

272

b. In-networking computing

c. Embedded systems for emerging

applications

d. Neuromorphic computing

e. Edge computing devices

4. Packaging and integration solutions such as 3DIC

and chiplets

5. Machine learning in architecture design

a. AI algorithms for workload analysis

b. Optimization of architecture configurations

for performance and power efficiency

AR-Security 1. Principles of Secure Hardware

a. Security Risk Analysis, Asset Protection,

and Threat Model

b. Cryptographic Acceleration with Hardware

c. Support for virtualization (e.g., OS isolation)

2. Roots of trust in hardware, Physically

Unclonable Functions (PUF)

3. Hardware Random Number Generators

4. Memory protection extensions

a. Runtime pointer bounds checking

(e.g., buffer overflow)

b. Protection at the microarchitectural

level

c. Protection at the ISA level

5. Trusted Execution Environment (TEE)

a. Trusted Computer Base Protections

b. Protecting virtual machines

c. Protecting containers

d. Trusted software modules (Enclaves)

Explain KA 2

AR-Quantum 1. Principles

a. The wave-particle duality principle

b. The uncertainty principle in the double-slit

experiment

c. What is a Qubit? Superposition and

measurement; Photons as qubits

d. Systems of two qubits; Entanglement; Bell

states; The No-Signaling theorem

2. Axioms of QM: superposition principle,

measurement axiom, unitary evolution

3. Single qubit gates for the circuit model of quantum

computation: X, Z, H.

Explain KA 2

273

4. Two qubit gates and tensor products; Working with

matrices

5. The No-Cloning Theorem; The Quantum

Teleportation protocol

6. Algorithms

a. Simple quantum algorithms (Bernstein-

Vazirani, Simon’s algorithm)

b. Implementing Deutsch-Josza with Mach-

Zehnder Interferometers

c. Quantum factoring (Shor’s Algorithm)

d. Quantum search (Grover’s Algorithm)

7. Implementation aspects

a. The physical implementation of qubits

b. Classical control of a Quantum Processing

Unit (QPU)

c. Error mitigation and control. NISQ and

beyond.

8. Emerging Applications

a. Post-quantum encryption

b. The Quantum Internet

c. Adiabatic quantum computation (AQC) and

quantum annealing

OS: Operating Systems

KU Topic Skill

Level

Core Hours

OS-Purpose 1. Operating system as mediator between general

purpose hardware and application-specific software

2. Universal operating system functions

3. Extended and/or specialized operating system

functions

4. Design issues

5. Influences of security, networking, multimedia,

parallel and distributed computing

6. Overarching concern of security/protection:

Neglecting to consider security at every layer

creates an opportunity to inappropriately access

resources.

Explain CS 2

OS-Principles 1. Operating system software design and approaches

2. Abstractions, processes, and resources
Explain CS 2

274

3. Concept of system calls and links to application

program interfaces

4. The evolution of the link between hardware

architecture and the operating system functions

5. Protection of resources means protecting some

machine instructions/functions

6. Leveraging interrupts from hardware level: service

routines and implementations

7. Concept of user/system state and protection,

transition to kernel mode using system calls

8. Mechanism for invoking of system calls, the

corresponding mode and context switch and return

from interrupt

9. Performance costs of context switches and

associated cache flushes when performing process

switches in Spectre-mitigated environments

OS-

Concurrency

1. Thread abstraction relative to concurrency

2. Race conditions, critical regions (role of interrupts if

needed)

3. Deadlocks and starvation

4. Multiprocessor issues (spin-locks, reentrancy)

5. Multiprocess concurrency vs multithreading

Explain CS 2

6. Thread creation, states, structures

7. Thread APIs

8. Deadlocks and starvation (necessary

conditions/mitigations)

9. Implementing thread safe code (semaphores,

mutex locks, cond vars)

10. Race conditions in shared memory

Apply KA 1

OS-Protection 1. Overview of operating system security mechanisms

2. Attacks and antagonism (scheduling, etc.)

3. Review of major vulnerabilities in real operating

systems

4. Operating systems mitigation strategies such as

backups

Apply CS 2

5. Policy/mechanism separation

6. Security methods and devices

7. Protection, access control, and authentication

Apply KA 1

OS-

Scheduling

1. Preemptive and non-preemptive scheduling

2. Schedulers and policies.

Explain KA 2

275

 3. Concepts of Symmetric Multi-Processor (SMP)

multiprocessor scheduling and cache coherence

4. Timers (e.g., building many timers out of finite

hardware timers)

5. Fairness and starvation

OS-Process 1. Processes and threads relative to virtualization –

Protected memory, process state, memory

isolation, etc.

2. Memory footprint/segmentation (stack, heap, etc.)

3. Creating and loading executables, shared libraries,

and dynamic linking

4. Dispatching and context switching

5. Interprocess communication

Explain KA 2

OS-Memory

1. Review of physical memory, address translation

and memory management hardware

2. Impact of memory hierarchy including cache

concept, cache lookup, etc. on operating system

mechanisms and policy

3. Logical and physical addressing, address space

virtualization

4. Concepts of paging, page replacement, thrashing

and allocation of pages and frames

5. Allocation/deallocation/storage techniques

(algorithms and data structure) performance and

flexibility

6. Memory caching and cache coherence and the

effect of flushing the cache to avoid speculative

execution vulnerabilities

7. Security mechanisms and concepts in memory

management including sandboxing, protection,

isolation, and relevant vectors of attack

Explain KA 2

OS-Devices

1. Buffering strategies

2. Direct Memory Access and Polled I/O, Memory-

mapped I/O

3. Historical and contextual - Persistent storage

device management (magnetic, SSD, etc.)

Explain KA 1

OS-Files

1. Concept of a file including Data, Metadata,

Operations and Access-mode

2. File system mounting

3. File access control

4. File sharing

Explain KA 2

276

5. Basic file allocation methods including linked,

allocation table, etc.

6. File system structures comprising file allocation

including various directory structures and methods

for uniquely identifying files (name, identified or

metadata storage location)

7. Allocation/deallocation/storage techniques

(algorithms and data structure) impact on

performance and flexibility (i.e. Internal and

external fragmentation and compaction)

8. Free space management such as using bit tables

vs linking

9. Implementation of directories to segment and track

file location

OS-

Advanced-

Files

1. File systems: partitioning, mount/unmount, virtual

file systems

2. In-depth implementation techniques

3. Memory-mapped files

4. Special-purpose file systems

5. Naming, searching, access, backups

6. Journaling and log-structured file systems

Explain KA 1

OS-

Virtualization

1. Using virtualization and isolation to achieve

protection and predictable performance

2. Advanced paging and virtual memory

3. Virtual file systems and virtual devices

4. Containers and their comparison to virtual machine

5. Thrashing

Explain KA 1

OS-Real-time 1. Process and task scheduling

2. Deadlines and real-time issues

3. Low-latency vs ”soft real-time" vs "hard real time"

Explain

KA 1

OS-Faults 1. Reliable and available systems

2. Software and hardware approaches to address

tolerance (RAID)

Explain KA 1

OS-SEP 1. Open source in operating systems

2. End-of-life issues with sunsetting operating

systems

Explain KA -

277

NC: Networking and Communication

KU Topic Skill

Level

Core Hours

NC-

Fundamentals

1. Importance of networking in contemporary

computing, and associated challenges

Explain

CS

3

2. Organization of the Internet

a. Users

b. Internet Service Providers

c. Autonomous systems

d. Content providers

e. Content delivery networks

Explain

3. Switching techniques

a. Circuit Switching

b. Packet Switching

Evaluate

4. Layers and their roles

a. Application

b. Transport

c. Network

d. Datalink

e. Physical

Explain

5. Layering principles

a. Encapsulation

b. Hourglass model

Explain

6. Network elements

a. Routers

b. Switches

c. Hubs

d. Access points

e. Hosts

Explain

7. Basic queueing concepts

a. Relationship with latency

b. Relationship with Congestion

c. Relationship with Service levels

Explain

NC-

Applications

1. Naming and address schemes.

a. DNS

b. IP addresses

Explain

CS

4

278

c. Uniform Resource Identifiers

2. Distributed application paradigms

a. Client/server

b. Peer-to-peer

c. Cloud

d. Edge

e. Fog

Evaluate

3. Diversity of networked application demands

a. Latency

b. Bandwidth

c. Loss tolerance

Explain

4. Application-layer development using one or more

protocols:

a. HTTP

b. SMTP

c. POP3

Develop

5. Interactions with TCP, UDP, and Socket APIs. Explain

NC-Reliability 1. Unreliable delivery

a. UDP

b. Other

Explain

KA

6 2. Principles of reliability

a. Delivery without loss

b. Duplication

c. Out of order

Develop

3. Error control

a. Retransmission

b. Error correction

Evaluate

4. Flow control

a. Stop and wait

b. Window based

Develop

5. Congestion control

a. Implicit congestion notification

b. Explicit congestion notification

Explain

6. TCP and performance issues

a. Tahoe

b. Reno

Evaluate

279

c. Vegas

d. Cubic

e. QUIC

NC-Routing 1. Routing paradigms and hierarchy

a. Intra/inter domain

b. Centralized and decentralized

c. Source routing

d. Virtual circuits

e. QoS

Evaluate

KA

4

2. Forwarding methods

a. Forwarding tables

b. Matching algorithms

Apply

3. IP and Scalability issues

a. NAT

b. CIDR

c. BGP

d. Different versions of IP

Explain

NC-SingleHop 1. Introduction to modulation, bandwidth, and

communication media

Explain

KA

3

2. Encoding and Framing. Evaluate

3. Medium Access Control (MAC)

a. Random access

b. Scheduled access

Evaluate

4. Ethernet Explain

5. Switching Apply

6. Local Area Network Topologies (e.g. data center

networks)

Explain

NC-Security 1. General intro about security

a. Threats

b. Vulnerabilities

c. Countermeasures

Explain

KA

4

2. Network specific threats and attack types

a. Denial of service

b. Spoofing

c. Sniffing

Explain

280

d. Traffic redirection

e. Attacker-in-the-middle

f. Message integrity attacks

g. Routing attacks

h. Traffic analysis

3. Countermeasures [Shared with Security]

a. Cryptography (e.g., SSL,

symmetric/asymmetric).

b. Architectures for secure networks (e.g.,

secure channels, secure routing protocols,

secure DNS, VPNs, DMZ, Zero Trust

Network Access, hyper network security,

anonymous communication protocols,

isolation)

c. Network monitoring, intrusion detection,

firewalls, spoofing and DoS protection,

honeypots, tracebacks, BGP Sec.

Explain

NC-Mobility 1. Principles of cellular communication (e.g., 4G,

5G)

Explain

KA

3

2. Principles of Wireless LANs (mainly 802.11) Explain

3. Device to device communication Explain

4. Multihop wireless networks Explain

5. Examples (e.g., ad hoc networks, opportunistic,

delay tolerant)

Explain

NC-Emerging 1. Middleboxes (e.g., filtering, deep packet

inspection, load balancing, NAT, CDN)

Explain

KA

4

2. Virtualization (e.g. SDN, Data Center Networks) Explain

3. Quantum Networking (e.g. Intro to the domain,

teleportation, security, Quantum Internet)

Explain

PDC: Parallel and Distributed Computing

KU Topic Skill

Level

Core Hours

281

PDC-

Programs

1. Parallelism

a. Declarative parallelism – determining which

actions may, or must not, be performed in

parallel, at the level of instructions, functions,

closures, composite actions, sessions, tasks,

and services is the main idea underlying PDC

algorithms; failing to do so is the main source

of errors.

b. Defining order – for example, using happens-

before relations or series/parallel directed

acyclic graphs representing programs

c. Independence – determining when ordering

doesn’t matter, in terms of commutativity,

dependencies, preconditions

d. Ensuring ordering among otherwise parallel

actions when necessary, including locking,

safe publication; and imposing communication

– sending a message happens before

receiving it; conversely relaxing when

unnecessary

2. Distribution

a. Defining places as devices executing actions,

including hardware components, remote hosts,

may also include external, uncontrolled

devices, hosts, and users

b. One device may time-slice or otherwise

emulate multiple parallel actions by fewer

processors by scheduling and virtualization.

c. Naming or identifying places (e.g., device IDs)

and actions as parties (e.g., thread IDs)

d. Activities across places may communicate

across media

3. Starting activities

a. Options that enable actions to be performed

(eventually) at places range from hardwiring to

configuration scripts; also establishing

communication and resource management;

these are expressed differently across

languages and contexts, usually relying on

automated provisioning and management by

platforms

b. Procedural: Enabling multiple actions to start at

a given program point; for example, starting

Explain CS 2

282

new threads, possibly scoping, or otherwise

organizing them in hierarchical groups

c. Reactive: Enabling upon an event by installing

an event handler, with less control of when

actions begin or end

d. Dependent: Enabling upon completion of

others; for example, sequencing sets of parallel

actions

e. Granularity: Execution cost of action bodies

should outweigh the overhead of arranging.

4. Execution Properties

a. Nondeterministic execution of unordered

actions

b. Consistency – ensuring agreement among

parties about values and predicates when

necessary to avoid races, maintain safety and

atomicity, or arrive at consensus.

c. Fault tolerance – handling failures in parties or

communication, including (Byzantine)

misbehavior due to untrusted parties and

protocols, when necessary to maintain

progress or availability.

d. Tradeoffs are one focus of evaluation

 5. One or more of the following mappings and

mechanisms across layered systems

a. CPU data- and instruction-level parallelism.

b. SIMD and heterogeneous data parallelism

c. Multicore scheduled concurrency, tasks, actors

d. Clusters, clouds; elastic provisioning

e. Networked distributed systems

f. Emerging technologies such as quantum

computing and molecular computing

Explain,

Develop

KA 2

PDC-

Communic

ation

1. Media

a. Varieties – channels (message passing or IO),

shared memory, heterogeneous, data stores

b. Reliance on the availability and nature of

underlying hardware, connectivity, and

protocols; language support, emulation

2. Channels

a. Explicit (usually named) party-to-party

communication media

Explain CS 2

283

b. APIs: sockets, architectural and language-

based constructs, and layered constructs such

as RPC (remote procedure call)

c. IO channel APIs

3. Memory

a. Shared memory architectures in which parties

directly communicate only with memory at

given addresses, with extensions to

heterogeneous memory supporting multiple

memory stores with explicit data transfer

across them; for example, GPU local and

shared memory, Direct Memory Access (DMA)

b. Memory hierarchies – multiple layers of sharing

domains, scopes, and caches; locality: latency,

false-sharing

c. Consistency properties – bitwise atomicity

limits, coherence, local ordering

4. Data Stores

a. Cooperatively maintained data structures

implementing maps and related ADTs.

b. Varieties – owned, shared, sharded, replicated,

immutable, versioned

 5. One or more of the following properties and

extensions

a. Topologies – unicast, multicast, mailboxes,

switches; routing via hardware and software

interconnection networks

b. Media concurrency properties – ordering,

consistency, idempotency, overlapping

communication with computation

c. Media performance – latency, bandwidth

(throughput) contention (congestion),

responsiveness (liveness), reliability (error and

drop rates), protocol-based progress (acks,

timeouts, mediation)

d. Media security properties – integrity, privacy,

authentication, authorization

e. Data formats – marshaling, validation,

encryption, compression

f. Channel policies: Endpoints, Sessions,

buffering, saturation response (waiting vs

dropping), Rate control

Explain,

Develop

KA 6

284

g. Multiplexing and demultiplexing many relatively

slow I/O devices or parties; completion-based

and scheduler-based techniques; async-await,

select and polling APIs

h. Formalization and analysis of channel

communication; for example, CSP

i. Applications of queuing theory to model and

predict performance

j. Memory models – sequential and

release/acquire consistency

k. Memory management, including reclamation of

shared data; reference counts and alternatives

l. Bulk data placement and transfer; reducing

message traffic and improving locality;

overlapping data transfer and computation;

impact of data layout such as array-of-structs

vs struct-of-arrays

m. Emulating shared memory: distributed shared

memory, Remote Direct Memory Access

(RDMA)

n. Data store consistency – atomicity,

linearizability, transactionality, coherence,

causal ordering, conflict resolution, eventual

consistency, blockchains

o. Faults, partitioning, and partial failures; voting;

protocols such as Paxos and Raft

p. Design tradeoffs among consistency,

availability, partition (fault) tolerance;

impossibility of meeting all at once

q. Security and trust: Byzantine failures, proof of

work and alternatives

PDC-

Coordinatio

n

1. Dependencies

a. Initiation or progress of one activity may be

dependent on other activities, so as to avoid

race conditions, ensure termination, or meet

other requirements.

b. Ensuring progress by avoiding dependency

cycles, using monotonic conditions, removing

inessential dependencies

2. Control constructs and design patterns

a. Completion-based – barriers, joins, including

termination control

Explain CS 2

285

b. Data-enabled – queues, producer-consumer

designs

c. Condition-based – polling, retrying, backoffs,

helping, suspension, signaling, timeouts

d. Reactive: enabling and triggering continuations

3. Atomicity

a. Atomic instructions enforced local access

orderings

b. Locks and mutual exclusion; lock granularity

c. Deadlock avoidance – ordering, coarsening,

randomized retries; encapsulation via lock

managers

d. Common errors: Failing to lock or unlock when

necessary, holding locks while invoking

unknown operations.

e. Avoiding locks – replication, read-only,

ownership, and non-blocking constructions

 4. One or more of the following properties and

extensions

a. Progress properties including lock-free, wait-

free, fairness, priority scheduling, interactions

with consistency, reliability

b. Performance with respect to contention,

granularity, convoying, scaling

c. Non-blocking data structures and algorithms

d. Ownership and resource control

e. Lock variants and alternatives: sequence locks,

read-write locks; Read-Copy-Update (RCU),

reentrancy; tickets; controlling spinning versus

blocking

f. Transaction-based control – optimistic and

conservative

g. Distributed locking: reliability

h. Alternatives to barriers: clocks; counters, virtual

clocks; dataflow and continuations; futures and

RPC; consensus-based, gathering results with

reducers and collectors

i. Speculation, selection, cancellation;

observability and security consequences

j. Resource control using semaphores and

condition variables

Explain,

Develop

KA 6

286

k. Control flow – scheduling computations, series-

parallel loops with (possibly elected) leaders,

pipelines and streams, nested parallelism.

l. Exceptions and failures, handlers, detection,

timeouts, fault tolerance, voting

PDC-

Evaluation:

1. Safety and liveness requirements in terms of temporal

logic constructs to express “always” and “eventually”

2. Identifying, testing for, and repairing violations,

including common forms of errors such as failure to

ensure necessary ordering (race errors), atomicity

(including check-then-act errors), and termination

(livelock)

3. Performance requirements metrics for throughput,

responsiveness, latency, availability, energy

consumption, scalability, resource usage,

communication costs, waiting and rate control,

fairness; service level agreements

4. Performance impact of design and implementation

choices, including granularity, overhead, and energy

consumption

5. Estimating scalability limitations, for example, using

Amdahl’s Law or Universal Scalability Law

Explain,

Evaluate

CS 1

 6. One or more of the following methods and tools

a. Extensions to formal sequential requirements

such as linearizability

b. Protocol, session, and transactional

specifications

c. Use of tools such as Unified Modelling

Language (UML), Temporal Logic of Actions

(TLA), program logics

d. Security analysis: safety and liveness in the

presence of hostile or buggy behaviors by

other parties; required properties of

communication mechanisms (for example lack

of cross-layer leakage), input screening, rate

limiting

e. Static analysis applied to correctness,

throughput, latency, resources, energy

f. Directed Acyclic Graph (DAG) model analysis

of algorithmic efficiency (work, span, critical

paths)

Explain,

Evaluate

KA 3

287

g. Testing and debugging; tools such as race

detectors, fuzzers, lock dependency checkers,

unit/stress/torture tests, visualizations,

continuous integration, continuous deployment,

and test generators

h. Measuring and comparing throughput,

overhead, waiting, contention, communication,

data movement, locality, resource usage,

behavior in the presence of excessive numbers

of events, clients, or threads

i. Application domain specific analyses and

evaluation techniques

PDC-

Algorithms

1. Expressing and implementing algorithms in given

languages and frameworks, to initiate activities (for

example threads), use shared memory constructs, and

channel, socket, and/or remote procedure call APIs

a. Data parallel examples including map/reduce

b. Using channel, socket, and/or RPC APIs in a

specified language, with program control for

sending (usually procedural) vs receiving

(usually reactive or RPC-based)

c. Using locks, barriers, and/or synchronizers to

maintain liveness without introducing races

2. Survey of common application domains across

multicore, reactive, data parallel, cluster, cloud, open

distributed systems, and frameworks

Explain,

Develop

CS 2

 3. One or more of the following algorithmic domains

a. Linear algebra – vector and matrix operations,

numerical precision/stability, applications in

data analytics and machine learning

b. Data processing – sorting, searching and

retrieval, concurrent data structures

c. Graphs, search, and combinatorics – marking,

edge-parallelization, bounding, speculation,

network-based analytics

d. Modeling and simulation – differential

equations; randomization, N-body problems,

genetic algorithms

e. Computational Logic – satisfiability (SAT),

concurrent logic programming

f. Graphics and computational geometry –

transforms, rendering, ray-tracing

Explain,

Develop,

Evaluate

KA 9

288

g. Resource management – allocating, placing,

recycling and scheduling processors, memory,

channels, and hosts; exclusive vs shared

resources; static, dynamic, and elastic

algorithms; real-time constraints; batching,

prioritization, partitioning; decentralization via

work-stealing and related techniques

h. Services – implementing web APIs, electronic

currency, transaction systems, multiplayer

games

SF: Systems Fundamentals

KU Topic Skill

Level

Core Hours

SF-

Overview

1. Basic building blocks and components of a computer

(gates, flip-flops, registers, interconnections; datapath

+ control + memory)

2. Hardware as a computational paradigm –

fundamental logic building blocks; logic expressions,

minimization, sum of product forms

3. Programming abstractions, interfaces, and use of

libraries

4. Distinction and interaction between application and

OS services, remote procedure call

5. Basic concept of pipelining, overlapped processing

stages

6. Basic concept of scaling: going faster vs handling

larger problems

Explain

CS

3

SF-

Foundations

1. Digital vs Analog/Discrete vs Continuous Systems

2. Simple logic gates, logical expressions, Boolean logic

simplification

3. Clocks, State, Sequencing

4. State and state transition (e.g., starting state, final

state, life cycle of states)

5. Finite state machines (e.g., NFA, DFA)

6. Combinational Logic, Sequential Logic, Registers,

Memories

7. Computers and Network Protocols as examples of

State Machines

Apply

CS

4

289

8. Sequential vs parallel processing

9. Application-level sequential processing – single

thread

10. Simple application-level parallel processing – request

level (web services/client-server/distributed), single

thread per server, multiple threads with multiple

servers, pipelining

SF-

Resource

1. Different types of resources (e.g., processor share,

memory, disk, net bandwidth)

2. Common resource allocation/scheduling algorithms

(e.g., first-come-first-serve, priority-based scheduling,

fair scheduling, and preemptive scheduling)

Explain CS 1

3. Advantages and disadvantages of common

scheduling algorithms

Explain KA 1

SF-

Performanc

e

1. Latencies in computer systems

a. Speed of light and computers (one foot per

nanosecond vs one GHz clocks)

b. Memory vs disk latencies vs across-the-

network memory

2. Caches and the effects of spatial and temporal locality

on performance in processors and systems

3. Caches and cache coherency in databases, operating

systems, distributed systems, and computer

architecture

4. Introduction to the processor memory hierarchy

Apply CS 2

5. The formula for average memory access time

6. Rationale of virtualization and isolation – protection

and predictable performance

7. Levels of indirection, illustrated by virtual memory for

managing physical memory resources

8. Methods for implementing virtual memory and virtual

machines

Apply KA 2

SF-

Evaluation

1. Performance figures of merit

2. Workloads and representative benchmarks, and

methods of collecting and analyzing performance

figures of merit

3. CPI (Cycles per Instruction) equation as a tool for

understanding tradeoffs in the design of instruction

Evaluate CS 2

290

sets, processor pipelines, and memory system

organizations

4. Amdahl’s Law: the part of the computation that cannot

be sped up limits the effect of the parts that can be

5. Order of magnitude analysis (Big O notation)

6. Analysis of slow and fast paths of a system

7. Events on their effect on performance (e.g.,

instruction stalls, cache misses, page faults)

8. Analytical tools to guide quantitative evaluation

9. Understanding layered systems, workloads, and

platforms, their implications for performance, and the

challenges they represent for evaluation

10. Microbenchmarking pitfalls

Evaluate KA 2

SF-

Reliability

1. Distinction between bugs and faults

2. Reliability vs availability

3. Reliability through redundancy

a. check and retry

b. redundant encoding (error correction codes,

CRC, FEC)

c. duplication/mirroring/replicas

Evaluate CS 2

4. Other approaches to reliability (e.g., journaling) Evaluate KA 1

SF-Security 1. Common system security issues (e.g., viruses, denial-

of-service attacks, and eavesdropping)

2. Countermeasures

a. Cryptography

b. Security architecture

Evaluate CS 2

3. Representative countermeasure systems

a. Intrusion detection systems, firewalls

Evaluate KA 1

SF-Design 1. Common criteria of system design (e.g., liveness,

safety, robustness, scalability, and security)

Design CS 2

2. Designs of representative systems (e.g., Apache web

server, Spark, and Linux)

Design KA 1

DM: Data Management

KU

Topic Skill

Level

Core Hours

291

DM-Data 1. The Data Life Cycle Evaluate CS 2

DM-Core 1. Purpose and advantages of database systems

2. Components of database systems

3. Design of core DBMS functions (e.g., query

mechanisms, transaction management, buffer

management, access methods)

4. Database architecture, data independence, and data

abstraction

5. Transaction management

6. Normalization

7. Approaches for managing large volumes of data (e.g.,

NoSQL database systems, use of MapReduce)

8. How to support CRUD-only applications

9. Distributed databases/cloud-based systems

10. Structured, semi-structured, and unstructured

databases

Explain CS 2

11. Use of a declarative query language Develop

DM-Core 12. Systems supporting structured and/or stream content Explain KA 1

DM-

Modeling

1. Data modeling

2. Relational data models

Develop CS 2

DM-

Modeling

3. Conceptual models (e.g., entity-relationship, UML

diagrams)

4. Semi-structured data model (expressed using DTD,

XML, or JSON Schema, for example)

Explain KA 3

DM-

Relational

1. Entity and referential integrity

a. Candidate key, superkeys

2. Relational database design

Explain CS 1

DM-

Relational

3. Mapping conceptual schema to a relational schema

4. Physical database design: file and storage structures

5. Introduction to Functional dependency theory

6. Normalization theory

a. Decomposition of a schema; lossless-join and

dependency-preservation properties of a

decomposition

b. Normal forms (BCNF)

c. Denormalization (for efficiency)

Develop KA 3

DM- 1. SQL Query Formation Develop CS 2

292

Querying a. Interactive SQL execution

b. Programmatic execution of an SQL query

DM-

Querying

2. Relational Algebra

3. SQL

a. Data definition including integrity and other

constraints specification

b. Update sublanguage

Develop KA 4

DM-

Processing

1. Page structures

2. Index structures

a. B+ trees

b. Hash indices: static and dynamic

c. Index creation in SQL

3. File Structures

a. Heap files

b. Hash files

4. Algorithms for query operators

a. External Sorting

b. Selection

c. Projection; with and without duplicate

elimination

d. Natural Joins: Nested loop, Sort-merge, Hash

join

e. Analysis of algorithm efficiency

5. Query transformations

6. Query optimization

a. Access paths

b. Query plan construction

c. Selectivity estimation

d. Index-only plans

7. Parallel Query Processing (e.g., parallel scan, parallel

join, parallel aggregation)

Explain KA 4

8. Database tuning/performance

a. Index selection

b. Impact of indices on query performance

c. Denormalization

Develop

DM-

Internals

1. DB Buffer Management

2. Transaction Processing

a. Isolation Levels

b. ACID

Explain KA 4

293

c. Serializability

d. Distributed transactions

3. Concurrency Control:

a. 2-Phase Locking

b. Deadlocks handling strategies

c. Quorum-based consistency models

4. Recovery Manager

a. Relation with Buffer Manager

DM-NoSQL 1. Why NoSQL? (e.g., Impedance mismatch between

Application [CRUD] and RDBMS)

2. Key-Value and Document data model

Explain KA 2

DM-

Analytics

1. Exploratory data techniques (motivation,

representation, descriptive statistics, visualizations)

2. Data science lifecycle – business understanding, data

understanding, data preparation, modeling,

evaluation, deployment, and user acceptance

3. Data mining and machine learning algorithms: e.g.,

classification, clustering, association, regression

4. Data acquisition and governance

5. Data security and privacy considerations

6. Data fairness and bias

7. Data visualization techniques and their use in data

analytics

8. Entity Resolution

Explain KA 3

DM-Security 1. Differences between data security and

data privacy

2. Protecting data and database systems

from attacks, including injection attacks

such as SQL injection

3. Personally identifying information (PII) and

its protection

4. Ethical considerations in ensuring the

security and privacy of data

Explain CS 1

DM-Security 5. Need for, and different approaches to

securing data at rest, in transit, and during

processing

6. Database auditing and its role in digital

forensics

7. Data inferencing and preventing attacks

Explain KA 2

294

8. Laws and regulations governing data

security and data privacy

DM-SEP 1. Issues related to scale

2. Data privacy overall

a. Privacy compliance by design

3. Data anonymity

4. Data ownership/custodianship

5. Intended and unintended applications of stored data

Explain CS

DM-SEP 6. Reliability of data

7. Provenance, data lineage, and metadata

management

8. Data security

Explain KA

SEC: Security

KU Topic Skill

Level

Core Hours

SEC-

Foundations

1. Developing a security mindset incorporating

crosscutting concepts: confidentiality, integrity,

availability, risk assessment, systems thinking,

adversarial thinking, human-centered thinking

2. Basic concepts of authentication and

authorization/access control

3. Vulnerabilities, threats, attack surfaces, and attack

vectors

4. Denial of Service (DoS) and Distributed Denial of

Service (DDoS)

5. Principles and practices of protection, e.g., least

privilege, open design, fail-safe defaults, defense in

depth, and zero trust; and how they can be

implemented

6. Optimization considerations between security,

privacy, performance, and other design goals

7. Impact of AI on security and privacy: using AI to

bolster defenses as well as address increased

adversarial capabilities due to AI

Develop CS 1

SEC-

Foundations

8. Access control models (e.g., discretionary,

mandatory, role-based, and attribute-based)

9. Security controls

Develop KA 5

295

10. Concepts of trust and trustworthiness

11. Applications of a security mindset: web, cloud, and

mobile devices

12. Protecting embedded and cyber-physical systems

13. Principles of usable security and human-centered

computing

14. Security and trust in AI/machine learning systems,

e.g., fit for purpose, ethical operating boundaries,

authoritative knowledge sources, verified training

data, repeatable system evaluation tests, system

attestation, independent validation/certification;

unintended consequences from: adverse effect

15. Security risks in building and operating AI/machine

learning systems, e.g., algorithm bias, knowledge

corpus bias, training corpus bias, copyright violation

16. Hardware considerations in security, e.g., principles of

secure hardware, secure processor architectures,

cryptographic acceleration, compartmentalization,

software-hardware interaction

SEC-SEP 1. Principles and practices of privacy

2. Societal impacts on breakdowns in security and

privacy.

3. Applicability of laws and regulations on security and

privacy

4. Professional ethical considerations when designing

secure systems and maintaining privacy; ethical

hacking

Develop CS 1

 SEC-SEP 5. Security by design

6. Privacy by design and privacy engineering

7. Security and privacy implications of malicious

AI/machine learning actors, e.g., identifying deep

fakes

8. Societal impacts of Internet of Things (IoT) devices

and other emerging technologies on security and

privacy

Develop KA 2

SEC-Coding 1. Common vulnerabilities and weaknesses

2. SQL injection and other injection attacks

3. Cross-site scripting techniques and mitigations

4. Input validation and data sanitization

5. Type safety and type-safe languages

Develop CS 2

296

6. Buffer overflows, stack smashing, and integer

overflows

7. Security issues due to race conditions

 SEC-

Coding

8. Principles of noninterference and non-deducibility

9. Preventing information flow attacks

10. Offensive security techniques as a defense

11. AI-assisted malware detection techniques

12. Ransomware: creation, prevention, and mitigation.

13. Secure use of third-party components

14. Malware: varieties, creation, reverse engineering, and

defense against them

15. Assurance: testing (including fuzzing and penetration

testing), verification and validation

16. Static and dynamic analyses

17. Secure compilers and secure code generation

Develop KA 5

SEC-Crypto 1. Differences between algorithmic, applied, and

mathematical views of cryptography

2. Mathematical preliminaries: modular arithmetic,

Euclidean algorithm, probabilistic independence,

linear algebra basics, number theory, finite fields,

complexity, asymptotic analysis.

3. Basic cryptography – symmetric key and public key

cryptography

4. Basic cryptographic building blocks, including

symmetric encryption, asymmetric encryption,

hashing, and message authentication

5. Classical cryptosystems, such as shift, substitution,

transposition ciphers, code books, machines

6. Kerckhoff’s principle and use of vetted libraries

7. History and real-world applications, e.g., electronic

cash, secure channels between clients and servers,

secure electronic mail, entity authentication, device

pairing, voting systems

Evaluate CS 1

 SEC-Crypto 8. Additional mathematics – primality and factoring;

elliptic curve cryptography

9. Private-key cryptosystems – substitution-permutation

networks, linear cryptanalysis, differential

cryptanalysis, DES, AES

10. Public-key cryptosystems – Diffie-Hellman, RSA

11. Data integrity and authentication – hashing, digital

signatures

Develop KA 4

297

12. Cryptographic protocols – challenge-response

authentication, zero-knowledge protocols,

commitment, oblivious transfer, secure two- or multi-

party computation, hash functions, secret sharing, and

applications

13. Attacker capabilities – chosen-message attack (for

signatures), birthday attacks, side channel attacks,

fault injection attacks

14. Quantum cryptography – Post Quantum/Quantum

resistant cryptography

15. Blockchain and cryptocurrencies

SEC-

Engineering

1. Security engineering goals – building systems that

remain dependable despite errors, accidents, or

malicious adversaries

2. Privacy engineering goals – building systems that

design, implement, and deploy privacy features and

controls

3. Problem analysis and situational analysis to address

system security

4. Engineering tradeoff analysis based on time, cost, risk

tolerance, risk acceptance, return on investment, and

so on

Develop CS 1

SEC-

Engineering

5. Security design and engineering, including functional

requirements, security subsystems, information

protection, security testing, security assessment, and

evaluation

6. Security analysis, covering security requirements

analysis; security controls analysis; threat analysis;

and vulnerability analysis

7. Security attack domains and attack surfaces, e.g.,

communications and networking, hardware, physical,

social engineering, software, and supply chain

8. Security attack modes, techniques, and tactics, e.g.,

authentication abuse; brute force; buffer manipulation;

code injection; content insertion; denial of service;

eavesdropping; function bypass; impersonation;

integrity attack; interception; phishing; protocol

analysis; privilege abuse; spoofing; and traffic

injection

9. Attestation of software products with respect to their

specification and adaptiveness

10. Design and development of cyber-physical systems

Develop KA 8

298

11. Considerations for trustworthy computing, e.g.,

tamper resistant packaging, trusted boot, trusted

kernel, hardware root of trust, software signing and

verification, hardware-based cryptography,

virtualization, and containers

SEC-

Forensics

1. Basic principles and methodologies for digital

forensics

2. System design for forensics

3. Forensics in different situations – operating systems,

file systems, application forensics, web forensics,

network forensics, mobile device forensics, use of

database auditing

4. Attacks on forensics and preventing such attacks

5. Incident handling processes

6. Rules of evidence – general concepts and differences

between jurisdictions

7. Legal issues – digital evidence protection and

management, chains of custody, reporting, serving as

an expert witness.

Develop KA 6

SEC-

Governance

1. Protecting critical assets from threats

2. Security governance – organizational objectives and

general risk assessment

3. Security management – achieve and maintain

appropriate levels of confidentiality, integrity,

availability, accountability, authenticity, and reliability

4. Security policy – Organizational policies, issue-

specific policies, system-specific policies

5. Approaches to identifying and mitigating risks to

computing infrastructure

6. Data lifecycle management policies: data collection,

backups, and retention; cloud storage and services;

breach disclosure

Develop KA 3

Applications Competency Area

The core topics listed in this section are typically covered in advanced, often elective courses. Effort

should be made to include the CS Core topics in earlier required courses in the curriculum.

 Knowledge Area Knowledge Units CS Core KA Core

299

AI Artificial Intelligence 12 12 18

GIT Graphics and Interactive Techniques 11 4 70

HCI Human-Computer Interaction 6 8 16

SPD Specialized Platform Development 8 4 68

 Total 28 N/A

AI: Artificial Intelligence

KU Topic Skill

Level

Core Hours

AI-

Introduction

1. Overview of AI problems, examples of successful

recent AI applications

2. Definitions of agents with examples (e.g., reactive,

deliberative)

3. What is intelligent behavior?

a. The Turing test and its flaws

b. Multimodal input and output

c. Simulation of intelligent behavior

d. Rational vs non-rational reasoning

Explain CS 2

4. Problem characteristics

a. Fully versus partially observable

b. Single vs multi-agent

c. Deterministic versus stochastic

d. Static vs dynamic

e. Discrete versus continuous

5. Nature of agents

a. Autonomous, semi-autonomous, mixed-

initiative autonomy

b. Reflexive, goal-based, and utility-based

c. Decision making under uncertainty and with

incomplete information

d. The importance of perception and

environmental interactions

e. Learning-based agents

f. Embodied agents

i. sensors, dynamics, effectors

Evaluate

300

6. AI Applications, growth, and Impact (economic,

societal, ethics)

Explain

AI-

Introduction

7. Practice identifying problem characteristics in

example environments

8. Additional depth on nature of agents with examples

9. Additional depth on AI Applications, growth, and

Impact (economic, societal, ethics)

Evaluate KA 1

AI-Search

AL-

Foundationa

l

1. State space representation of a problem

a. Specifying states, goals, and operators

b. Factoring states into representations

(hypothesis spaces)

c. Problem solving by graph search

i. e.g., Graphs as a space, and tree

traversals as exploration of that space

ii. Dynamic construction of the graph (not

given upfront)

Explain

CS

5 2. Uninformed graph search for problem solving

a. Breadth-first search

b. Depth-first search

i. With iterative deepening

c. Uniform cost search

Develop,

Apply

3. Heuristic graph search for problem solving

a. Heuristic construction and admissibility

b. Hill-climbing

c. Local minima and the search landscape

i. Local vs global solutions

d. Greedy best-first search

e. A* search

Develop,

Apply

4. Space and time complexities of graph search

algorithms

Evaluate

AI-Search 5. Bidirectional search

6. Beam search

7. Two-player adversarial games

a. Minimax search

b. Alpha-beta pruning

i. Ply cutoff

8. Implementation of A* search

9. Constraint Satisfaction

Develop,

Apply

KA

6

301

AI-KRR 1. Types of representations

a. Symbolic, logical

i. Creating a representation from a

natural language problem statement

b. Learned subsymbolic representations

c. Graphical models (e.g., naive Bayes, Bayes

net)

2. Review of probabilistic reasoning, Bayes theorem

Explain CS 2

3. Bayesian reasoning

a. Bayesian inference

Apply

AI-KRR 4. Random variables and probability distributions

a. Axioms of probability

b. Probabilistic inference

c. Bayes’ Rule (derivation)

d. Bayesian inference (more complex examples)

5. Independence

6. Conditional Independence

7. Markov chains and Markov models

8. Utility and decision making

Apply KA 2

AI-ML 1. Definition and examples of a broad variety of machine

learning tasks

a. Supervised learning

i. Classification

ii. Regression

b. Reinforcement learning

c. Unsupervised learning

i. Clustering

2. Fundamental ideas:

a. No free lunch theorem: no one learner can

solve all problems; representational design

decisions have consequences

b. sources of error and undecidability in machine

learning

 CS 4

3. A simple statistical-based supervised learning such as

linear regression or decision trees

a. Focus on how they work without going into

mathematical or optimization details; enough

to understand and use existing

implementations correctly.

Apply,

Develop,

Evaluate

302

4. The overfitting problem / controlling solution

complexity (regularization, pruning – intuition only)

a. The bias (underfitting) – variance (overfitting)

tradeoff

5. Working with Data

a. Data preprocessing

i. Importance and pitfalls of

preprocessing choices

b. Handling missing values (imputing, flag-as-

missing)

i. Implications of imputing vs flag-as-

missing

c. Encoding categorical variables, encoding real-

valued data

d. Normalization/standardization

e. Emphasis on real data, not textbook examples

6. Representations

a. Hypothesis spaces and complexity

b. Simple basis feature expansion, such as

squaring univariate features

c. Learned feature representations

7. Machine learning evaluation

a. Separation of train, validation, and test sets

b. Performance metrics for classifiers

c. Estimation of test performance on held-out

data

d. Tuning the parameters of a machine learning

model with a validation set

e. Importance of understanding what a model is

doing, where its pitfalls/shortcomings are, and

the implications of its decisions

8. Basic neural networks

a. Fundamentals of understanding how neural

networks work and their training process,

without details of the calculations

b. Basic introduction to generative neural

networks (large language models, etc.)

9. Ethics for Machine Learning

a. Focus on real data, real scenarios, and case

studies

b. Dataset/algorithmic/evaluation bias and

unintended consequences

Explain,

Evaluate

303

AI-ML 10. Formulation of simple machine learning as an

optimization problem, such as least squares linear

regression or logistic regression

a. Objective function

b. Gradient descent

c. Regularization to avoid overfitting

(mathematical formulation)

11. Ensembles of models

a. Simple weighted majority combination

12. Deep learning

a. Deep feed-forward networks (intuition only, no

mathematics)

b. Convolutional neural networks (intuition only,

no mathematics)

c. Visualization of learned feature

representations from deep nets

d. Other architectures (generative NN, recurrent

NN, transformers, etc.)

13. Performance evaluation

a. Other metrics for classification (e.g., error,

precision, recall)

b. Performance metrics for regressors

c. Confusion matrix

d. Cross-validation

i. Parameter tuning (grid/random search,

via cross-validation)

14. Overview of reinforcement learning methods

15. Two or more applications of machine learning

algorithms

a. e.g., medicine and health, economics, vision,

natural language, robotics, game play

Apply,

Develop,

Evaluate

KA 6

16. Ethics for Machine Learning

a. Continued focus on real data, real scenarios,

and case studies

b. Privacy

c. Fairness

d. Intellectual property

e. Explainability

Explain,

Evaluate

AI-SEP 1. At least one application of AI to a specific problem

and field, such as medicine, health, sustainability,

social media, economics, education, robotics, etc. (at

least one for the CS Core)

Explain,

Evaluate

CS 3

304

a. Formulating and evaluating a specific

application as an AI problem

i. How to deal with underspecified or ill-

posed problems

b. Data availability/scarcity and cleanliness

i. Basic data cleaning and preprocessing

ii. Data set bias

c. Algorithmic bias

d. Evaluation bias

e. Assessment of societal implications of the

application

2. Deployed deep generative models

a. High-level overview of deep image generative

models (e.g., as of 2023, DALL-E, Midjourney,

Stable Diffusion), their uses, and their

shortcomings/pitfalls.

b. High-level overview of large language models

(e.g., as of 2023, ChatGPT, Bard), their uses,

and their shortcomings/pitfalls.

3. Overview of societal impact of AI

a. Ethics

b. Fairness

c. Trust/explainability

d. Privacy and usage of training data

e. Human autonomy and

oversight/regulations/legal requirements

f. Sustainability

AI-SEP 4. One or more additional applications of AI to a broad

set of problems and diverse fields, such as medicine,

health, sustainability, social media, economics,

education, robotics, etc. (choose a different area from

that chosen for the CS Core).

a. Formulating and evaluating a specific

application as an AI problem

i. How to deal with underspecified or ill-

posed problems

b. Data availability/scarcity and cleanliness

i. Basic data cleaning and preprocessing

ii. Data set bias

c. Algorithmic bias

d. Evaluation bias

Explain,

Evaluate

KA 3

305

e. Assessment of societal implications of the

application

5. Additional depth on deployed deep generative models

a. Introduction to how deep image generative

models work, (e.g., as of 2023, DALL-E,

Midjourney, Stable Diffusion) including

discussion of attention

b. Introduction to how large language models

work, (e.g., as of 2023, ChatGPT, Bard)

including discussion of attention

c. Idea of foundational models, how to use them,

and the benefits/issues with training them from

big data

6. Analysis and discussion of the societal impact of AI

a. Ethics

b. Fairness

c. Trust/explainability

d. Privacy and usage of training data

e. Human autonomy and

oversight/regulations/legal requirements

f. Sustainability

GIT: Graphics and Interactive Techniques

KU Topic Skill

Level

Core Hours

GIT-

Fundamenta

ls

1. Uses and potential risks

2. Graphic output

3. Human vision system

4. Standard image formats

5. Digitization of analog data

6. Color Models

7. Tradeoffs between storing image data and

recomputing image data

8. Spatialization

9. Animation

Explain CS 4

 10. Applied computer graphics

11. Display characteristics

Develop KA 3

1. Data visualization and information visualization Explain KA 6

306

GIT-

Visualization

2. Visualization of:

a. 2D/3D scalar fields

b. Vector fields and flow data

c. Time-varying data

d. High-dimensional data

e. Non-spatial data

3. Visualization techniques (e.g., color mapping,

isosurfaces, dimension reduction, parallel

coordinates, multi-variate, tree/graph-structured, text)

4. Direct volume data rendering (e.g., ray-casting,

transfer functions, segmentation)

5. Common data formats (e.g., HDF, netCDF, geotiff,

GeoJSON, shape files, raw binary, CSV, ASCII to

parse)

6. Common visualization software and libraries (e.g., R,

Processing, D3.js, GIS, Matlab, IDL, Python)

7. Perceptual and cognitive foundations that drive visual

abstractions

8. Visualization design

9. Evaluation of visualization methods and applications

10. Visualization bias

11. Applications of visualization

GIT-

Rendering

1. Object and scene modeling

2. Camera and projection modeling

3. Light models and radiometry

4. Rendering

Explain KA 6

GIT-

Modeling

1. Basic geometric operations

2. Surface representation/model

3. Volumetric representation/model

4. Procedural representation/model

5. Multi-resolution modeling

6. Reconstruction

Explain KA 6

GIT-

Shading

1. Solutions and approximations to the rendering

equation

2. Time (motion blur), lens position (focus), and

continuous frequency (color) and their impact on

rendering

3. Shadow mapping

4. Occlusion culling

5. Bidirectional Scattering Distribution function (BSDF)

theory and microfacets

Explain KA 6

307

6. Subsurface scattering

7. Area light sources

8. Hierarchical depth buffering

9. Image-based rendering

10. Non-photorealistic rendering

11. GPU architecture

12. Human visual systems including adaptation to light,

sensitivity to noise, and flicker fusion

GIT-

Animation

1. Principles of Animation

2. Types of animation

3. Key-frame animation

4. Forward and inverse kinematics

5. Skinning algorithms

6. Motion capture

Explain KA 6

GIT-

Simulation

1. Collision detection and response

2. Procedural animation using noise

3. Particle systems

4. Grid-based fluids

5. Heightfields

6. Rule-based systems (e.g., L-systems, space-

colonizing systems, Game of Life)

Explain KA 6

GIT-

Immersion

1. Immersion levels (i.e., Virtual Reality (VR),

Augmented Reality (AR), and Mixed Reality (MR))

2. The definition and distinction of immersion and

presence

3. 360 Video

4. Stereoscopic display

5. Viewer tracking

6. Time-critical rendering to achieve optimal motion to

photon (MTP) latency

 a. Branching movies

7. Distributed VR, collaboration over computer network

8. Presence and factors that impact level of immersion

9. 3D interaction

10. Applications in medicine, simulation, training, and

visualization

11. Safety in immersive applications

Explain KA 6

GIT-

Interaction

1. Event Driven Programming

2. Graphical User Interface (Single Channel)

3. Accessibility

Apply KA 4

308

GIT-Image 1. Morphological operations

2. Color histograms

3. Image enhancement

4. Image restoration

5. Image coding

6. Connections to deep learning

Explain KA 6

GIT-

Physical

1. Interaction with the physical world

2. Connection to physical artifacts

3. Internet of Things

Explain KA 6

GIT-SEP 1. Accessibility

2. Ethics/privacy

3. Intellectual Property law as it relates to computer

graphics and interactive techniques

4. DEIA, current and past contributors to the field

Evaluate CS

KA

1

3

HCI: Human-Computer Interaction

KU Topic Skill

Level

Core Hours

HCI-User 1. User-centered design and evaluation methods

a. “You are not the users”

b. user needs-finding

c. formative studies

d. interviews

e. surveys

f. usability tests

Explain,

Evaluate,

Develop

CS 2

HCI-User 2. User-centered design and evaluation methods

a. personas/persona spectrum

b. user stories/storytelling and techniques for

gathering stories

c. empathy maps

d. needs assessment (techniques for uncovering

needs and gathering requirements – e.g.,

interviews, surveys, ethnographic and contextual

enquiry)

e. journey maps

f. evaluating the design

g. interfacing with stakeholders, as a team

Explain,

Evaluate,

Develop

KA 5

309

h. risks associated with physical, distributed, hybrid

and virtual teams

3. Physical and cognitive characteristics of the user

a. physical capabilities that inform interaction design

(e.g., color perception, ergonomics)

b. cognitive models that inform interaction design

(e.g., attention, perception and recognition,

movement, memory)

c. topics in social/behavioral psychology (e.g.,

cognitive biases, change blindness)

4. Designing for diverse user populations

a. how differences (e.g., in race, ability, age,

gender, culture, experience, and education)

impact user experiences and needs

b. internationalization, other cultures, and cross-

cultural design

c. designing for users from other cultures

d. cross-cultural design

e. challenges to effective design evaluation (e.g.,

sampling, generalization; disability and disabled

experiences)

f. universal design

5. Collaboration and communication

a. understanding the user in a multi-user context

b. synchronous group communication (e.g., chat

rooms, conferencing, online games)

c. asynchronous group communication (e.g., email,

forums, social networks)

d. social media, social computing, and social

network analysis

e. online collaboration

f. social coordination and online communities

g. avatars, characters, and virtual worlds

HCI-

Accountabili

ty

1. Design impact

a. Sustainability

b. Inclusivity

c. Safety, security, and privacy

d. Harm and disparate impact

2. Ethics in design methods and solutions

a. the role of artificial intelligence

b. responsibilities for considering stakeholder

impact and human factors

c. the role of design to meet user needs

Explain,

Apply,

Evaluate

Develop

CS 2

310

3. Requirements in design

a. ownership responsibility

b. legal frameworks and compliance requirements

c. consideration beyond immediate user needs

including via iterative reconstruction of problem

analysis and “digital well-being” features

HCI-

Accountabili

ty

4. Value-sensitive design

a. identify stakeholders

b. determine and include diverse stakeholder values

and value systems

5. Persuasion through design

a. assessing persuasive content of a design

b. persuasion as a design goal

Explain,

Apply,

Evaluate

Develop

KA 2

HCI-

Accessibility

1. Background

a. societal and legal support for and obligations to

people with disabilities

b. accessible design benefits everyone

2. Techniques

a. accessibility standards (e.g., Web Content

Accessibility Guidelines)

3. Technologies

a. features and products that enable

accessibility and support inclusive

development by designers and engineers

4. Inclusive Design Frameworks (IDFs)

a. recognizing differences

5. Universal design

Explain,

Apply,

Evaluate

Develop

CS 2

HCI-

Accessibility

6. Background

a. Demographics and populations

b. International perspectives

c. Attitudes towards people with disabilities

7. Techniques

a. UX (user experience) design and research

b. software engineering practices that enable

inclusion and accessibility.

8. Technologies

a. examples of accessibility-enabling features,

such as conformance to screen readers

9. Inclusive Design Frameworks

a. creating inclusive processes, such as

participatory design; designing for larger impact

Explain,

Apply,

Evaluate

Develop

KA 2

311

b. designing for larger impact

HCI-

Evaluation

1. Methods for evaluation with users

a. formative (e.g., needs-finding and exploratory

analysis) and summative assessment (e.g.,

functionality and usability testing)

b. elements to evaluate (e.g., utility, efficiency,

learnability, user satisfaction, affective elements

such as pleasure and engagement)

c. understanding ethical approval requirements

before engaging in user research

Explain,

Apply,

Evaluate,

Develop

CS 1

HCI-

Evaluation

2. Methods for evaluation with users

a. qualitative methods (qualitative coding and

thematic analysis)

b. quantitative methods (statistical tests)

c. mixed methods (e.g., observation, think-aloud,

interview, survey, experiment)

d. presentation requirements (e.g., reports,

personas)

e. user-centered testing

f. heuristic evaluation

g. challenges and shortcomings to effective

evaluation (e.g., sampling, generalization)

3. Study planning

a. how to set study goals

b. hypothesis design

c. approvals from Institutional Research Boards and

ethics committees

d. how to pre-register a study

e. within-subjects vs between-subjects design

4. Implications and impacts of design with respect to

a. the environment

b. material

c. society

d. security

e. privacy

f. ethics

g. broader impacts

Explain,

Apply,

Evaluate,

Develop

KA 2

HCI-Design 1. Prototyping techniques and tools

a. low-fidelity prototyping

b. rapid prototyping

c. throw-away prototyping

Explain,

Apply,

Evaluate,

Develop

CS 1

312

d. granularity of prototyping

2. Design patterns

a. iterative design

b. universal design

c. interaction design (e.g., data-driven design,

event-driven design

3. Design constraints

a. platforms

b. devices

c. resources

d. balance among usability, security and privacy

HCI-Design 4. Design patterns and guidelines

a. software architecture patterns

b. cross-platform design

c. synchronization

5. Design processes

a. participatory design

b. co-design

c. double-diamond

d. convergence and divergence

6. Interaction techniques

a. input and output vectors (e.g., gesture, pose,

touch, voice, force)

b. graphical user interfaces

c. controllers

d. haptics

e. hardware design

f. error handling

7. Visual UI design

a. color

b. layout

c. gestalt principles

Explain,

Apply,

Evaluate

Develop

KA 5

HCI-SEP 1. Universal and user-centered design

2. Accountability

3. Accessibility and inclusive design

4. Evaluating the design

5. System design

Explain,

Apply,

Evaluate,

Develop

CS Shared

with

SEP

HCI-SEP 6. Participatory and inclusive design processes

Explain,

Apply,

Evaluate,

Develop

KA Shared

with

SEP

313

SPD: Specialized Platform Development

KU Topic Skill

Level

Core Hours

SPD-Common 1. Overview of development platforms (i.e., web,

mobile, game, robotics, embedded, and interactive)

a. Input/sensors/control devices/haptic

devices

b. Resource constraints

i. Computational

ii. Data storage

iii. Memory

iv. Communication

c. Requirements – security, uptime availability,

fault tolerance

d. Output/actuators/haptic devices

2. Programming via platform-specific Application

Programming Interface (API) vs traditional

application construction

3. Overview of platform Languages (e.g., Python,

Swift, Lua, Kotlin)

4. Programming under platform constraints and

requirements (e.g., available development tools,

development, security considerations)

5. Techniques for learning and mastering a platform-

specific programming language

Apply CS 3

SPD-Web

1. Web programming languages (e.g., HTML5,

JavaScript, PHP, CSS)

2. Web platforms, frameworks, or meta-frameworks

a. Cloud services

b. API, Web Components

3. Software as a Service (SaaS).

4. Web standards such as document object model,

accessibility

5. Security and Privacy Considerations

Apply KA 5

SPD-Mobile 1. Development with

a. Mobile programming languages

b. Mobile programming environments

Apply KA 3

314

2. Mobile platform constraints

a. User interface design

b. Security

3. Access

a. Accessing data through API

b. Designing API endpoints for mobile apps –

pitfalls and design considerations

c. Network and the web interfaces

SPD-Robot 1. Types of robotic platforms and devices

2. Sensors, embedded computation, and effectors

(actuators)

3. Robot-specific languages and libraries

4. Robotic software architecture (e.g., using the Robot

Operating System (ROS))

5. Robotic platform constraints and design

considerations

6. Interconnections with physical or simulated

systems

7. Robotic Algorithms

8. Forward kinematics

a. Inverse kinematics

b. Dynamics

c. Navigation and path planning

d. Grasping and manipulation

9. Safety and interaction considerations

Apply KA 4

SPD-

Embedded

1. Introduction to the unique characteristics of

embedded systems

a. Real-time vs soft real-time and non-real-

time systems

b. Resource constraints, such as memory

profiles and deadlines

c. API for custom architectures

d. GPU technology.

e. Field Programmable Gate Arrays (FPGA).

f. Cross-platform systems

2. Embedded Systems

a. Microcontrollers

b. Interrupts and feedback

c. Interrupt handlers in high-level languages

d. Hard and soft interrupts and trap-exits

e. Interacting with hardware, actuators, and

sensors

Apply KA 4

315

f. Energy efficiency

g. Loosely timed coding and synchronization

h. Software adapters

3. Embedded programming

4. Hard real-time systems vs soft real-time systems

a. Timeliness

b. Time synchronization/scheduling

c. Prioritization

d. Latency

e. Compute jitter

5. Real-time resource management.

6. Memory management:

a. Mapping programming construct (variable)

to a memory location

b. Shared memory

c. Manual memory management

d. Garbage collection

e. Safety considerations and safety analysis.

7. Sensors and actuators

8. Analysis and verification

9. Application design

SPD-Game 1. Historical and contemporary platforms for games

a. Evolution of Game Platforms (e.g., Brown

Box to Metaverse and beyond)

Improvement in Computing Architectures

(CPU and GPU); Platform Convergence

and Mobility)

b. Typical Game Platforms (e.g., Personal

Computer; Home Console; Handheld

Console; Arcade Machine; Interactive

Television; Mobile Phone; Tablet;

Integrated Head-Mounted Display;

Immersive Installations and Simulators;

Internet of Things enabled Devices; CAVE

Systems; Web Browsers; Cloud-based

Streaming Systems)

c. Characteristics and Constraints of Different

Game Platforms (e.g., Features (local

storage, internetworking, peripherals); Run-

time performance (GPU/CPU frequency,

number of cores); Chipsets (physics

processing units, vector co-processors);

Apply KA 4

316

Expansion Bandwidth (PCIe); Network

throughput (Ethernet); Memory types and

capacities (DDR/GDDR); Maximum stack

depth; Power consumption; Thermal

design; Endian)

d. Typical Sensors, Controllers, and Actuators

(e.g., distinctive control system designs –

peripherals (mouse, keypad, joystick),

game controllers, wearables, interactive

surfaces; electronics and bespoke

hardware; computer vision, inside-out

tracking, and outside-in tracking; IoT-

enabled electronics and I/O

e. eSports Ecosystems (e.g., evolution of

gameplay across platforms; games and

eSports; game events such as LAN/arcade

tournaments and international events such

as the Olympic eSports Series; streamed

media and spectatorship; multimedia

technologies and broadcast management;

professional play; data and machine

learning for coaching and training)

2. Real-time Simulation and Rendering Systems

a. CPU and GPU architectures: (e.g., Flynn’s

taxonomy; parallelization; instruction sets;

standard components—graphics compute

array, graphics memory controller, video

graphics array basic input/output system;

bus interface; power management unit;

video processing unit; display interface)

b. Pipelines for physical simulations and

graphical rendering (e.g., tile-based,

immediate-mode)

c. Common Contexts for Algorithms, Data

Structures, and Mathematical Functions

(e.g., game loops; spatial partitioning,

viewport culling, and level of detail; collision

detection and resolution; physical

simulation; behavior for intelligent agents;

procedural content generation)

d. Media representations (e.g., I/O, and

computation techniques for virtual worlds:

audio; music; sprites; models and textures;

317

text; dialogue; multimedia (e.g., olfaction,

tactile)

3. Game Development Tools and Techniques:

a. Programming Languages (e.g., C++; C#;

Lua; Python; JavaScript).

b. Shader Languages (e.g., HLSL, GLSL;

ShaderGraph)

c. Graphics Libraries and APIs (e.g., DirectX;

SDL; OpenGL; Metal; Vulkan; WebGL)

d. Common Development Tools and

Environments (e.g., IDEs; Debuggers;

Profilers; Version Control Systems including

those handling binary assets; Development

Kits and Production/Consumer Kits;

Emulators)

4. Game Engines

a. Open Game Engines (e.g., Unreal; Unity;

Godot; CryEngine; Phyre; Source 2;

Pygame and Ren’Py; Phaser; Twine;

SpringRTS)

b. Techniques (e.g., Ideation, Prototyping,

Iterative Design and Implementation,

Compiling Executable Builds, Development

Operations and Quality Assurance – Play

Testing and Technical Testing, Profiling;

Optimization, Porting; Internationalization

and Localization, Networking)

5. Game Design

a. Vocabulary (e.g., game definitions;

mechanics-dynamics-aesthetics model;

industry terminology; experience design;

models of experience and emotion)

b. Design Thinking and User-Centered

Experience Design (e.g., methods of

designing games; iteration, incrementing,

and the double-diamond; phases of pre-

and post-production; quality assurance,

including alpha and beta testing;

stakeholder and customer involvement;

community management)

c. Genres (e.g., adventure; walking simulator;

first-person shooter; real-time strategy;

318

multiplayer online battle arena (MOBA);

role-playing game (rpg))

d. Audiences and Player Taxonomies (e.g.,

people who play games; diversity and

broadening participation; pleasures, player

types, and preferences; Bartle, yee).

e. Proliferation of digital game technologies to

domains beyond entertainment (e.g.,

Education and Training; Serious Games;

Virtual Production; eSports; Gamification;

Immersive Experience Design; Creative

Industry Practice; Artistic Practice;

Procedural Rhetoric)

Crosscutting Core Topics

The core topics in Society, Ethics, and the Profession (SEP) and Mathematical and Statistical

Foundations (MSF) may be covered across the curriculum or in dedicated courses and benefit all the

competency areas.

 Knowledge Area Knowledge Units CS Core KA Core

SEP Society, Ethics, and the Profession 11 18 14

MSF Mathematical and Statistical Foundations 5 55 145

 Total 73 159

SEP: Society, Ethics, and the Profession

KU Topic Skill

Level

Core Hours

SEP-Context 1. Social implications (e.g., political and cultural

ideologies) in a hyper-networked world where the

capabilities and impact of social media, artificial

intelligence and computing in general are rapidly

evolving

2. Impact of computing applications (e.g., social

media, artificial intelligence applications) on

Evaluate

Evaluate

CS 3

319

individual well-being, and safety of all kinds (e.g.,

physical, emotional, economic)

3. Consequences of involving computing

technologies, particularly artificial intelligence,

biometric technologies, and algorithmic decision-

making systems, in civic life (e.g., facial

recognition technology, biometric tags, resource

distribution algorithms, policing software) and how

human agency and oversight is crucial

4. How deficits in diversity and accessibility in

computing affect society and what steps can be

taken to improve equity in computing

Evaluate

Evaluate

SEP-Context 5. Growth and control of the internet, data,

computing, and artificial intelligence

6. Often referred to as the digital divide, differences

in access to digital technology resources and its

resulting ramifications for gender, class, ethnicity,

geography, and/or developing countries, including

consideration of responsibility to those who might

be less wealthy, under threat, or who would

struggle to have their voices heard.

7. Accessibility issues, including legal requirements

such as Web Content Accessibility Guidelines

(www.w3.org/TR/WCAG21)

8. Context-aware computing

Explain

Evaluate

Explain

Explain

KA 2

SEP-Ethical-

Analysis

1. Avoiding fallacies and misrepresentation in

argumentation

2. Ethical theories and decision-making

(philosophical and social frameworks)

3. Recognition of the role culture plays in our

understanding, adoption, design, and use of

computing technology

4. Why ethics is important in computing, and how

ethics is similar to, and different from, laws and

social norms

Apply

Apply

Evaluate

Explain

CS 2

SEP-Ethical-

Analysis

5. Professional checklists

6. Evaluation rubrics

7. Stakeholder analysis

8. Standpoint theory

9. Introduction to ethical frameworks (e.g.,

consequentialism such as utilitarianism, non-

Develop

Develop

Develop

Apply

Explain

KA 1

320

consequentialism such as duty, rights, or justice,

agent-centered such as virtue or feminism,

contractarianism, ethics of care) and their use for

analyzing an ethical dilemma

SEP-

Professional-

Ethics

1. Community values and the laws by which we live

2. The nature of being a professional including care,

attention, discipline, fiduciary responsibility, and

mentoring

3. Keeping up to date as a computing professional in

terms of familiarity, tools, skills, legal and

professional frameworks as well as the ability and

responsibility to self-assess and progress in the

computing field

4. Professional certification, codes of ethics, conduct,

and practice, such as the ACM, IEEE, AAAI, and

other international societies

5. Accountability, responsibility, and liability (e.g.,

software correctness, reliability and safety,

warranty, negligence, strict liability, ethical

approaches to security vulnerability disclosures)

including whether a product/service should be

built, not just doing so because it is technically

possible.

6. Introduction to theories describing the human

creation and use of technology including

instrumentalism, sociology of technological

systems, disability justice, neutrality thesis,

pragmatism, and decolonial models, including

developing and using technology to right wrongs

and do good

7. Strategies for recognizing and reporting designs,

systems, software, and professional conduct (or

their outcomes) that may violate law or

professional codes of ethics

Evaluate

Apply

Evaluate

Evaluate

Apply

Explain

Apply

CS 2

SEP-

Professional-

Ethics

8. The role of the computing professional and

professional societies in public policy

9. Maintaining awareness of consequences

10. Ethical dissent and whistleblowing

11. The relationship between regional culture and

ethical dilemmas

12. Dealing with harassment and discrimination

13. Forms of professional credentialing

Explain

Apply

Explain

Evaluate

Explain

Explain

KA 2

321

14. Ergonomics and healthy computing environments

15. Time-to-market and cost considerations versus

quality professional standards

Explain

Explain

SEP-IP 1. Intellectual property rights

2. Intangible digital intellectual property (IDIP)

3. Legal foundations for intellectual property

protection

4. Common software licenses (e.g., MIT, GPL and its

variants, Apache, Mozilla, Creative Commons)

5. Plagiarism and authorship

Explain

Explain

Evaluate

Evaluate

Explain

CS 1

SEP-IP 6. Philosophical foundations of intellectual property

7. Forms of intellectual property (e.g., copyrights,

patents, trade secrets, trademarks) and the rights

they protect

8. Limitations on copyright protections, including fair

use and the first sale doctrine

9. Intellectual property laws and treaties that impact

the enforcement of copyrights

10. Software piracy and technical methods for

enforcing intellectual property rights, such as

digital rights management and closed source

software as a trade secret

11. Moral and legal foundations of the open-source

movement

12. Systems that use others’ data (e.g., large

language models)

Explain

Explain

Explain

Explain

Explain

Explain

Explain

KA 1

SEP-Privacy 1. Privacy implications of widespread data collection

including but not limited to transactional

databases, data warehouses, surveillance

systems, cloud computing, and artificial

intelligence

2. Conceptions of anonymity, pseudonymity, and

identity

3. Technology-based solutions for privacy protection

(e.g., end-to-end encryption and differential

privacy)

4. Civil liberties, privacy rights, and cultural

differences

Explain

Evaluate

Evaluate

Explain

CS 2

SEP-Privacy 5. Philosophical and legal conceptions of the nature

of privacy including the right to privacy

Explain

KA 1

322

6. Legal foundations of privacy protection in relevant

jurisdictions (e.g., GDPR in the EU)

7. Privacy legislation in areas of practice (e.g.,

HIPAA in the US, AI Act in the EU)

8. Basic Principles of human-subjects research and

principles beyond what the law requires (e.g.,

Belmont Report, UN Universal Declaration on

Human Rights and how this relates to technology)

9. Freedom of expression and its limitations

10. User-generated content, content moderation, and

liability

Explain

Evaluate

Explain

Evaluate

Explain

SEP-

Communicatio

n

1. Oral, written, and electronic team and group

communication

2. Technical communication materials (e.g., source

code and documentation, tutorials, reference

materials, API documentation)

3. Communicating with different stakeholders such

as customers, leadership, or the public

4. Team collaboration (including tools) and conflict

resolution

5. Accessibility and inclusivity requirements for

addressing professional audiences

6. Cultural competence in communication including

considering the impact of difference in natural

language

Apply

Develop

Apply

Apply

Apply

Develop

CS 2

SEP-

Communicatio

n

7. Tradeoffs in competing factors that affect

communication channels and choices

8. Communicating to solve problems or make

recommendations in the workplace, such as

raising ethical concerns or addressing accessibility

issues

Evaluate

Apply

KA 1

SEP-

Sustainability

1. Environmental, social, and cultural impacts of

implementation decisions (e.g., sustainability

goals, algorithmic bias/outcomes, economic

viability, and resource consumption)

2. Local/regional/global social and environmental

impacts of computing systems and their use (e.g.,

carbon footprints, resource usage, e-waste) in

hardware (e.g., e-waste, data centers, rare

element and resource utilization, recycling) and

software (e.g., cloud-based services, blockchain,

Evaluate

Evaluate

CS 1

323

AI model training and use), not neglecting the

impact of everyday use such as hardware (cheap

hardware replaced frequently) and software (web-

browsing, email, and other services with

hidden/remote computational demands)

3. Guidelines for sustainable design standards

Develop

SEP-

Sustainability

4. Systemic effects of complex computing

technologies and phenomena (e.g., generative AI,

data centers, social media, offshoring, remote

work)

5. Pervasive computing – information processing that

has been integrated into everyday objects and

activities, such as smart energy systems, social

networking, and feedback systems to promote

sustainable behavior, transportation,

environmental monitoring, citizen science and

activism

6. How the sustainability of software systems is

interdependent with social systems, including the

knowledge and skills of its users, organizational

processes and policies, and its societal context

(e.g., market forces, government policies)

Evaluate

Evaluate

Explain

KA 1

SEP-History 1. The history of computing: hardware, software, and

human/organizational

2. The role of history in the present including within

different social contexts, and the relevance of this

history on the future

Explain

Evaluate

CS 1

SEP-History 3. Age I (Pre-digital) – Ancient analog computing

(Stonehenge, Antikythera mechanism, Salisbury

Cathedral clock, etc.), human-calculated number

tables, Euclid, Lovelace, Babbage, Gödel, Church,

Turing, pre-electronic (electro-mechanical and

mechanical) hardware

4. Age II (Early modern computing) – ENIAC,

UNIVAC, Bombes (Bletchley Park and

codebreakers), computer companies (e.g., IBM),

mainframes, etc.

5. Age III (PC era) – PCs, modern computer

hardware and software, Moore’s Law

6. Age IV (Internet) – Networking, internet

architecture, browsers and their evolution,

Explain

Explain

Explain

Explain

KA 1

324

standards, born-on-the-internet companies, and

services (e.g., Google, Amazon, Microsoft, etc.),

distributed computing

7. Age V (Mobile & Cloud) – Mobile computing and

smartphones, cloud computing and models thereof

(e.g., SaaS), remote servers, security and privacy,

social media

8. Age VI (AI) – Decision making systems,

recommender systems, generative AI and other

machine learning driven tools and technologies

Explain

Explain

SEP-

Economies

1. Economic models – regulated and unregulated,

monopolies, network effects, and open market;

knowledge and attention economies

2. Pricing and deployment strategies – planned

obsolescence, subscriptions, freemium, software

licensing, open-source, free software, adware

3. Impacts of differences in access to computing

resources, and the effect of skilled labor supply

and demand on the quality of computing products

4. Automation, AI, and their effects on job markets,

developers, and users

5. Ethical concerns surrounding the attention

economy and other economies of computing (e.g.,

informed consent, data collection, use of verbose

legalese in user agreements)

Explain

Explain

Evaluate

Explain

Evaluate

KA 1

SEP-Security 1. Computer crimes, legal redress for computer

criminals and impact on victims and society

2. Social engineering, computing-enabled fraud,

identity theft and recovery from these

3. Cyber terrorism, criminal hacking, and hacktivism

4. Malware, viruses, worms

5. Attacks on critical infrastructure such as electrical

grids and pipelines

6. Non-technical fundamentals of security (e.g.,

human engineering, policy, confidentiality)

Explain

Explain

Explain

Explain

Explain

Explain

CS 2

SEP-Security 7. Benefits and challenges of existing and proposed

computer crime laws

8. Security policies and the challenges of change and

compliance

9. Responsibility for security throughout the

computing life cycle

Evaluate

Explain

Explain

KA 1

325

10. International and local laws and how they intersect Explain

SEP-DEIA 1. How identity impacts and is impacted by

computing technologies and environments

(academic and professional)

2. The benefits of diverse development teams and

the impacts of teams that are not diverse

3. Inclusive language and charged terminology, and

why their use matters

4. Inclusive behaviors and why they matter

5. Designing and developing technology with

accessibility in mind

6. How computing professionals can influence and

impact diversity, equity, inclusion, and

accessibility, including but not only through the

software they create

Explain

Explain

Apply

Explain

Explain

Explain

CS 2

SEP-DEIA 7. Experts and their practices that reflect the

identities of the classroom and the world through

practical DEIA principles

8. Historic marginalization due to systemic social

mechanisms, technological supremacy and global

infrastructure challenges to diversity, equity,

inclusion, and accessibility

9. Cross-cultural differences in, and needs for,

diversity, equity, inclusion, and accessibility

Evaluate

Explain

Explain

KA 2

MSF: Mathematical and Statistical Foundations

KU Topic Skill

Level

Core Hours

MSF-Discrete 1. Sets, relations, functions, cardinality

2. Recursive mathematical definitions

3. Proof techniques (induction, proof by contradiction)

4. Permutations, combinations, counting, pigeonhole

principle

5. Modular arithmetic

6. Logic: truth tables, connectives (operators),

inference rules, formulas, normal forms, simple

predicate logic

7. Graphs: basic definitions

8. Order notation

Apply,

Develop

,

Explain

CS/KA 29-40

326

MSF-

Probability

1. Basic notions: sample spaces, events, probability,

conditional probability, Bayes’ rule

2. Discrete random variables and distributions

3. Continuous random variables and distributions

4. Expectation, variance, law of large numbers,

central limit theorem

5. Conditional distributions and expectation

6. Applications to computing, the difference between

probability and statistics (as subjects)

CS-

Core:

Apply

KA-

Core:

Apply,

Develop

,

Explain

CS/KA 11-40

MSF-Statistics 1. Basic definitions and concepts: populations,

samples, measures of central tendency, variance

2. Univariate data: point estimation, confidence

intervals

Develop CS 10

MSF-Statistics 3. Multivariate data – estimation, correlation,

regression

4. Data transformation – dimension reduction,

smoothing

5. Statistical models and algorithms

6. Hypothesis testing

Apply,

Explain

KA 30

MSF-Linear 1. Vectors – definitions, vector operations, geometric

interpretation, angles; Matrices – definition, matrix

operations, meaning of Ax=b

Develop CS 5

MSF-Linear 2. Matrices, matrix-vector equation, geometric

interpretation, geometric transformations with

matrices

3. Solving equations, row-reduction

4. Linear independence, span, basis

5. Orthogonality, projection, least-squares, orthogonal

bases

6. Linear combinations of polynomials, Bezier curves

7. Eigenvectors and eigenvalues

8. Applications to computer science – PCA, SVD,

page-rank, graphics

Apply,

Explain

KA 35

MSF-Calculus 1. Sequences, series, limits

2. Single-variable derivatives – definition,

computation rules (chain rule, etc.), derivatives of

important functions, applications

3. Single-variable integration – definition, computation

rules, integrals of important functions, fundamental

theorem of calculus, definite vs indefinite,

applications (including in probability)

4. Parametric and polar representations

Apply,

Develop

KA 40

327

5. Taylor series

6. Multivariate calculus – partial derivatives, gradient,

chain-rule, vector valued functions,

7. Optimization – convexity, global vs local minima,

gradient descent, constrained optimization, and

Lagrange multipliers

8. ODEs – definition, Euler method, applications to

simulation, Monte Carlo integration

9. CS applications – gradient descent for machine

learning, forward and inverse kinematics,

applications of calculus to probability

328

329

Curricular Packaging

A few curricular packaging options of various sizes are presented here. These can be adapted to local

strengths and needs to create a customized computer science curriculum. In each case, an effort

should be made to include all the CS Core topics in required courses in the curriculum. The more KA

Core topics covered, the greater the breadth of the curriculum. The more hours dedicated to KA Core

topics, the greater the depth of the curriculum. Non-core topics add to the richness of the curriculum. In

each curricular model, a capstone course is included to emphasize the importance of an integrative

hands-on experience. It may also serve as the course where CS Core topics not covered elsewhere in

the curriculum can be incorporated.

8 Course Model

This is a minimal course configuration that covers all the CS Core topics. However, it does not leave

much room for exploration:

1. CS I (AL-2, FPL-1, SDF-34, SEP-3)

2. CS II (AL-18, FPL-4, MSF-4, SDF-9, SEC-1, SEP-3)

3. Mathematical and Statistical Foundations (MSF-40)

4. Algorithms (AL-12, MSF-11, PDC-2, SEP-3)

5. Introduction to Computing Systems (SF-18, OS-8, AR-9, NC-7, SEP-2)

6. Programming Language Concepts (FPL-16, PDC-7, SEP-2)

7. Introduction to Computing Applications (SEC-5, AI-12, GIT-4, DM-10, SEP-3)

8. Capstone (SE-6, HCI-8, SPD-3, SEP-2)

10 Course Model

1. CS I (SDF, SEP)

2. CS II (SDF, FPL-4, AL-12, SEP)

3. Mathematical and Statistical Foundations (MSF)

4. Data Structures and Algorithms (AL-20, AI, MSF, SEP)

5. Introduction to Computing Systems (SF, OS, AR, NC)

6. Programming Languages (FPL-17, AL, PDC, SEP)

7. Software Engineering (SE, HCI, GIT, PDC, SPD, DM, SEP)

8. One Systems elective:

a. Operating Systems (OS, PDC)

b. Computer Architecture (AR)

c. Parallel and Distributed Computing (PDC)

d. Networking (NC, SEC, SEP)

e. Databases (DM, SEP)

9. One elective from Applications:

a. Artificial Intelligence (AI, MSF, SPD, SEP)

b. Graphics (GIT, HCI, MSF, SEP)

330

c. Application Security (SEC, SEP)

d. Human-Centered Design (HCI, GIT, SEP)

10. Capstone (SE, SEP)

12 Course Model

1. CS I (SDF, SEP)

2. CS II (SDF, AL-12, DM, SEP)

3. Mathematical and Statistical Foundations (MSF)

4. Algorithms (AL-20, AI, MSF, SEC, SEP)

5. Introduction to Computing Systems (SF, OS, AR, NC)

6. Programming Languages (FPL, AL, PDC, SEP)

7. Software Engineering (SE, HCI, GIT, PDC, SPD, DM, SEP)

8. Two from Systems electives:

a. Operating Systems (OS, PDC)

b. Computer Architecture (AR)

c. Parallel and Distributed Computing (PDC)

d. Networking (NC, SEC, SEP)

e. Databases (DM, SEP)

9. Two electives from Applications:

a. Artificial Intelligence (AI, MSF, SPD, SEP)

b. Graphics (GIT, HCI, MSF, SEP)

c. Application Security (SEC, SEP)

d. Human-Centered Design (HCI, GIT, SEP)

10. Capstone (SE, SEP)

16 Course Model

Three different models are presented here, each with its own benefits.

Model 1:

1. CS I (SDF, SEP)

2. CS II (SDF, AL-12, DM, SEP)

3. Mathematical and Statistical Foundations (MSF)

4. Algorithms (AL-20, SEP)

5. Introduction to Computing Systems (SF, SEP)

6. Programming Languages (FPL, AL, PDC, SEP)

7. Theory of Computation (AL-32, SEP)

8. Software Engineering (SE, HCI, GIT, PDC, SPD, DM, SEP)

9. Operating Systems (OS, PDC, SEP)

10. Computer Architecture (AR, SEP)

11. Parallel and Distributed Computing (PDC, SEP)

331

12. Networking (NC, SEP)

13. Pick one of:

a. Introduction to Artificial Intelligence (AI, MSF, SEP)

b. Machine Learning (AI, MSF, SEP)

c. Robotics (AI, SPD, SEP)

14. Pick one of:

a. Graphics (GIT, MSF, SEP)

b. Human-Centered Design (GIT, SEP)

c. Animation (GIT, SEP)

d. Virtual Reality (GIT, SEP)

15. Security (SEC, SEP)

16. Capstone (SE, SEP)

Model 2:

1. CS I (SDF, SEP)

2. CS II (SDF, AL, DM, SEP)

3. Mathematical and Statistical Foundations (MSF, AI, DM)

4. Algorithms (AL, MSF, SEP)

5. Introduction to Computing Systems (SF, SEP)

6. Programming Languages (FPL, AL, PDC, SEP)

7. Theory of Computation (AL, SEP)

8. Software Engineering (SE, HCI, GIT, PDC, SPD, DM, SEP)

9. Operating Systems (OS, PDC, SEP)

10. Two electives from:

a. Computer Architecture (AR, SEP)

b. Parallel and Distributed Computing (PDC, SEP)

c. Networking (NC, SEP)

d. Network Security (NC, SEC, SEP)

e. Security (SEC, SEP)

11. Pick three of:

a. Introduction to Artificial Intelligence (AI, MSF, SEP)

b. Machine Learning (AI, MSF, SEP)

c. Deep Learning (AI, MSF, SEP)

d. Robotics (AI, SPD, SEP)

e. Data Science (AI, DM, GIT, MSF)

f. Graphics (GIT, MSF, SEP)

g. Human-Computer interaction (HCI, SEP)

h. Human-Centered Design (GIT, HCI, SEP)

i. Animation (GIT, SEP)

j. Virtual Reality (GIT, SEP)

k. Physical Computing (GIT, SPD, SEP)

12. Society, Ethics, and the Profession (SEP)

13. Capstone (SE, SEP)

332

Model 3:

1. CS I (SDF, SEP)

2. CS II (SDF, AL, DM, SEP)

3. Mathematical and Statistical Foundations (MSF)

4. Algorithms (AL, AI, MSF, SEC, SEP)

5. Introduction to Computing Systems (SF, OS, AR, NC)

6. Programming Languages (FPL, AL, PDC, SEP)

7. Software Engineering (SE, HCI, GIT, PDC, SPD, DM, SEP)

8. Two from Systems electives:

a. Operating Systems (OS, PDC)

b. Computer Architecture (AR)

c. Parallel and Distributed Computing (PDC)

d. Networking (NC, SEC, SEP)

e. Databases (DM, SEP)

9. Two electives from Applications:

a. Artificial Intelligence (AI, MSF, SPD, SEP)

b. Graphics (GIT, HCI, MSF, SEP)

c. Application Security (SEC, SEP)

d. Human-Centered Design (HCI, GIT, SEP)

10. Three open CS electives

11. Society, Ethics, and the Profession (SEP) course

12. Capstone (SE, SEP)

	Body of Knowledge
	Body of Knowledge
	Artificial Intelligence (AI)
	Preamble
	Changes since CS2013
	Consider recent AI advances when using this curriculum

	Core Hours
	Knowledge Units
	AI-Introduction: Fundamental Issues
	AI-Search: Search
	AI-KRR: Fundamental Knowledge Representation and Reasoning
	AI-ML: Machine Learning
	AI-SEP: Applications and Societal Impact
	AI-LRR: Logical Representation and Reasoning
	AI-Probability: Probabilistic Representation and Reasoning
	AI-Planning: Planning
	AI-Agents: Agents and Cognitive Systems
	AI-NLP: Natural Language Processing
	AI-Robotics: Robotics
	AI-Vision: Perception and Computer Vision

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Algorithmic Foundations (AL)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	AL-Foundational: Foundational Data Structures and Algorithms
	AL-Strategies: Algorithmic Strategies
	AL-Complexity: Complexity
	AL-Models: Computational Models and Formal Languages
	AL-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Architecture and Organization (AR)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	AR-Logic: Digital Logic and Digital Systems
	AR-Representation: Machine-Level Data Representation
	AR-Assembly: Assembly Level Machine Organization
	AR-Memory: Memory Hierarchy
	AR-IO: Interfacing and Communication
	AR-Organization: Functional Organization
	AR-Performance-Energy: Performance and Energy Efficiency
	AR-Heterogeneity: Heterogeneous Architectures
	AR-Security: Secure Processor Architectures
	AR-Quantum: Quantum Architectures
	AR-SEP: Sustainability Issues

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Data Management (DM)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	DM-Data: The Role of Data and the Data Life Cycle
	DM-Core: Core Database System Concepts
	DM-Modeling: Data Modeling
	DM-Relational: Relational Databases
	DM-Querying: Query Construction
	DM-Processing: Query Processing
	DM-Internals: DBMS Internals
	DM-NoSQL: NoSQL Systems
	DM-Security: Data Security and Privacy
	DM-Analytics: Data Analytics
	DM-Distributed: Distributed Databases/Cloud Computing
	DM-Unstructured: Semi-structured and Unstructured Databases
	DM-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee
	References

	Foundations of Programming Languages (FPL)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	FPL-OOP: Object-Oriented Programming
	FPL-Functional: Functional Programming
	FPL-Logic: Logic Programming
	FPL-Scripting: Shell Scripting
	FPL-Event-Driven: Event-Driven and Reactive Programming
	FPL-Parallel: Parallel and Distributed Computing
	FPL-Aspect: Aspect-Oriented Programming
	FPL-Types: Type Systems
	FPL-Systems: Systems Execution and Memory Model
	FPL-Translation: Language Translation and Execution
	FPL-Abstraction: Program Abstraction and Representation
	FPL-Syntax: Syntax Analysis
	FPL-Semantics: Compiler Semantic Analysis
	FPL-Analysis: Program Analysis and Analyzers
	FPL-Code: Code Generation
	FPL-Run-Time: Run-time Behavior and Systems
	FPL-Constructs: Advanced Programming Constructs
	FPL-Pragmatics: Language Pragmatics
	FPL-Formalism: Formal Semantics
	FPL-Methodologies: Formal Development Methodologies
	FPL-Design: Design Principles of Programming Languages
	FPL-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Graphics and Interactive Techniques (GIT)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	GIT-Fundamentals: Fundamental Concepts
	GIT-Visualization: Visualization
	GIT-Rendering: Applied Rendering and Techniques
	GIT-Modeling: Geometric Modeling
	GIT-Shading: Shading and Advanced Rendering
	GIT-Animation: Computer Animation
	GIT-Simulation: Simulation
	GIT-Immersion: Immersion
	GIT-Interaction: Interaction
	GIT-Image: Image Processing
	GIT-Physical: Tangible/Physical Computing
	GIT-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee
	References

	Human-Computer Interaction (HCI)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	HCI-User: Understanding the User: Individual goals and interactions with others
	HCI-Accountability: Accountability and Responsibility in Design
	HCI-Accessibility: Accessibility and Inclusive Design
	HCI-Evaluation: Evaluating the Design
	HCI-Design: System Design
	HCI-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Mathematical and Statistical Foundations (MSF)
	Preamble
	Changes since CS2013

	Core Hours
	Acknowledging some tensions
	Rationale for recommended hours
	Knowledge Units
	MSF-Discrete: Discrete Mathematics
	MSF-Probability: Probability
	MSF-Statistics: Statistics
	MSF-Linear: Linear Algebra
	MSF-Calculus

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee
	References

	Networking and Communication (NC)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	NC-Fundamentals: Fundamentals
	NC-Applications: Networked Applications
	NC-Reliability: Reliability Support
	NC-Routing: Routing and Forwarding
	NC-SingleHop: Single Hop Communication
	NC-Security: Network Security
	NC-Mobility: Mobility
	NC-Emerging: Emerging Topics

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Operating Systems (OS)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	OS-Purpose: Role and Purpose of Operating Systems
	OS-Principles: Principles of Operating System
	OS-Concurrency: Concurrency
	OS-Protection: Protection and Safety
	OS-Scheduling: Scheduling
	OS-Process: Process Model
	OS-Memory: Memory Management
	OS-Devices: Device management
	OS-Files: File Systems API and Implementation
	OS-Advanced-Files: Advanced File systems
	OS-Virtualization: Virtualization
	OS-Real-time: Real-time and Embedded Systems
	OS-Faults: Fault tolerance
	OS-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Parallel and Distributed Computing (PDC)
	Preamble
	Overview
	Changes since CS2013

	Core Hours
	Knowledge Units
	PDC-Programs: Programs
	PDC-Communication: Communication
	PDC-Coordination: Coordination
	PDC-Evaluation: Evaluation
	PDC-Algorithms: Algorithms

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee
	References

	Software Development Fundamentals (SDF)
	Preamble
	Changes since CS 2013
	Overview

	Core Hours
	Knowledge Units
	SDF-Fundamentals: Fundamental Programming Concepts and Practices
	SDF-Data-Structures: Fundamental Data Structures
	SDF-Algorithms: Algorithms
	SDF-Practices: Software Development Practices
	SDF-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Software Engineering (SE)
	Preamble
	Changes since CS 2013
	Overview

	Core Hours
	Knowledge Units
	SE-Teamwork: Teamwork
	SE-Tools: Tools and Environments
	SE-Requirements: Product Requirements
	SE-Design: Software Design
	SE-Construction: Software Construction
	SE-Validation: Software Verification and Validation
	SE-Refactoring: Refactoring and Code Evolution
	SE-Reliability: Software Reliability
	SE-Formal: Formal Methods

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Security (SEC)
	Preamble
	Changes since CS2013
	Differences between CS2023 Security knowledge area and Cybersecurity

	Core Hours
	Knowledge Units
	SEC-Foundations: Foundational Security
	SEC-SEP: Society, Ethics, and the Profession
	SEC-Coding: Secure Coding
	SEC-Crypto: Cryptography
	SEC-Engineering: Security Analysis, Design, and Engineering
	SEC-Forensics: Digital Forensics
	SEC-Governance: Security Governance

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee
	References

	Society, Ethics, and the Profession (SEP)
	Preamble
	Changes Since CS2013

	Core Hours
	Knowledge Units
	SEP-Context: Social Context
	SEP-Ethical-Analysis: Methods for Ethical Analysis
	SEP-Professional-Ethics: Professional Ethics
	SEP-IP: Intellectual Property
	SEP-Privacy: Privacy and Civil Liberties
	SEP-Communication: Communication
	SEP-Sustainability: Sustainability
	SEP-History: Computing History
	SEP-Economies: Economies of Computing
	SEP-Security: Security Policies, Laws and Computer Crimes
	SEP-DEIA: Diversity, Equity, Inclusion, and Accessibility

	Professional Dispositions
	Course Packaging Suggestions
	Committee
	References

	Systems Fundamentals (SF)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	SF-Overview: Overview of Computer Systems
	SF-Foundations: Basic Concepts
	SF-Resource: Resource Management
	SF-Performance: System Performance
	SF-Evaluation: Performance Evaluation
	SF-Reliability: System Reliability
	SF-Security: System Security
	SF-Design: System Design
	SF-SEP: Society, Ethics, and the Profession

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Specialized Platform Development (SPD)
	Preamble
	Changes since CS2013

	Core Hours
	Knowledge Units
	SPD-Common: Common Aspects/Shared Concerns
	SPD-Web: Web Platforms
	SPD-Mobile: Mobile Platforms
	SPD-Robot: Robot Platforms
	SPD-Embedded: Embedded Platforms
	SPD-Game: Game Platforms
	SPD-Interactive: Interactive Computing Platforms
	SPD-SEP/Mobile
	SPD-SEP/Web
	SPD-SEP/Game
	SPD-SEP/Robotics
	SPD-SEP/Interactive

	Professional Dispositions
	Mathematics Requirements
	Course Packaging Suggestions
	Committee

	Core Topics Table
	Software Competency Area
	SDF: Software Development Fundamentals
	FPL: Foundations of Programming Languages
	SE: Software Engineering

	Systems Competency Area
	AR: Architecture and Organization
	OS: Operating Systems
	NC: Networking and Communication
	PDC: Parallel and Distributed Computing
	SF: Systems Fundamentals
	DM: Data Management
	SEC: Security

	Applications Competency Area
	AI: Artificial Intelligence
	GIT: Graphics and Interactive Techniques
	HCI: Human-Computer Interaction
	SPD: Specialized Platform Development

	Crosscutting Core Topics
	SEP: Society, Ethics, and the Profession
	MSF: Mathematical and Statistical Foundations

	Curricular Packaging
	8 Course Model
	10 Course Model
	12 Course Model
	16 Course Model
	Model 1:
	Model 2:
	Model 3:

