Competency Framework Examples

Sample Tasks

Sample tasks have been listed here for various combinations of component, activity and constraint for the three representative competency areas: software, systems and applications. Many, but not all the tasks are atomic. The tasks are not restricted to those that require CS or KA Core topics only.

Software Competency Area

Component – Activity	Tasks with constraint(s) italicized
Program – Design	Design efficient data structures for a problem
	• Design test cases to determine if a program is <i>functionally correct</i>
	Design an API for a service
Program – Develop	Write a program that meets a given specification
	 Automate testing of new code under development
	 Develop a program that leverages libraries and APIs
	 Work in a team effectively to solve a problem
Program – Document	Document a program
	Consistently format source code.
Program – Evaluate	• Evaluate an existing application (open source or proprietary) as a
	whole or partial solution for meeting a defined requirement
Program – Maintain	Refactor a program.
	 Perform code review to evaluate the quality of code
Program – Humanize	Ensure fair and equitable access in a program
	 Document the accountability, responsibility, and liability an
	individual/company assumes when releasing a given
	service/software/product
	 Incorporate legal and ethical privacy requirements into a given
	service/software/product's development cycle
	 Convey the benefits of diverse development teams and user
	bases on the services/software/products the company provides,
	as well as the impacts that a lack of diversity can have on them
Program – Improve	Debug a program
Program – Research	 Compute the running time of a program
	Formally prove the <i>correctness</i> of code
Algorithm – Design	Design an <i>efficient</i> algorithm for a problem
Algorithm –	• Explain how an algorithm satisfies a set of requirements
Document	

Algorithm – Evaluate	•	Evaluate the efficiency of an algorithm
Algorithm – Maintain	•	Redesign an algorithm to improve a non-functional requirement
Algorithm –	•	Justify that an algorithm provides fair and equitable access to
Humanize		data
Algorithm –	•	Prove the correctness of an algorithm
Research	•	Compute the run time efficiency of an algorithm
Language/Paradigm – Design	•	Select an appropriate language/paradigm for an application
Language/Paradigm	•	Justify the choice of a language/paradigm for a program
 Document 	•	Write a white paper to describe how a program is translated into
		machine code and executed
	•	White a white paper explaining how a program executes in an
		efficient manner with respect to memory and CPU utilization
Language/Paradigm – Evaluate	•	Evaluate the appropriateness of a language/paradigm for an
		application
	•	Explain the benefits and challenges of converting an application
		into parallel/distributed versions
	•	Write a white paper explaining how a program effectively utilizes
		language features to make it safe and secure

Systems Competency Area

Component – Activity	Tasks with constraint(s) italicized
Processor – Design	Revise a specification to enable <i>parallel processing</i> without
	violating other essential properties or features
Processor – Develop	• Develop a version of CPU-based application to run on a hardware
	accelerator (GPU, TPU, NPU)
	 Implement a parallel/distributed version of a known algorithm
Processor – Evaluate	Evaluate the <i>performance-watt</i> of a machine learning model
	deployed on an embedded device
Processor – Improve	Identify and repair a <i>performance</i> problem due to sequential
	bottlenecks
Storage – Evaluate	Assess the <i>performance implications</i> of cache memories in an
	application
	 Apply knowledge of operating systems to assess page faults in
	CPU-GPU memory management and their performance impact
	on an accelerated application
I/O – Design	Design software modules for sensor hardware integration
I/O – Develop	 Develop a sensing-actuator robotics arm for an automated
	manufacturing cell
	• Develop a benchmarking software tool to assess the <i>performance</i>
	gain in removing I/O bottlenecks in code

Communication –	Design a networking protocol.
Design	 Design software that enables safe communication between
Ū	processes
Communication –	Develop a networked application
Develop	 Deploy and securely operate a network of wireless sensors.
	 Develop software that enables safe communication between
	processes
Communication –	• Evaluate the performance of a network, in specific latency,
Evaluate	throughput, congestion, and various service levels
Communication –	• Defend a network from an ongoing distributed denial-of-service
Maintain	attack
Communication –	• Write a white paper to explain social, ethical, and professional
Humanize	issues governing the design and deployment of a networked
	system
Communication –	Identify failures in a datacenter network
Improve	• Identify and repair a <i>performance problem</i> due to communication
	or data latency
Architecture –	Deploy a system in a cloud environment
Develop	• Deploy an application component on a <i>virtualized container</i>
Architecture –	• Find the <i>performance bottleneck</i> of a given system architecture
Evaluate	
Data – Design	Design how a new application's data will be stored
Data – Develop	Create a database for a new application
Data – Maintain	Get data back online after a disruption (e.g., power outage)
Data – Humanize	Produce a white paper assessing the social and ethical
	<i>implications</i> of collecting and storing the data from a new (or
	existing) application
	• Assess the <i>legal and ethical implications</i> of collecting and using
	customer/user data
Data – Improve	Improve a database application's <i>performance (speed)</i>
	• Modify a concurrent system to use a more scalable, reliable or
	available data store

Applications Competency Area

Component – Activity	Tasks with constraint(s) italicized
Input – Design	Design an <i>intuitive</i> user interface for an application
Input – Develop	Implement the user interface of an application
Input – Humanize	Write a paper on the <i>accessibility</i> of a user interface
Computation – Design	• Specify the operators and partial-order planning graph to solve a
	logistics problem, showing all ordering constraints
Computation – Develop	• Implement an agent to play a two-player complete information
	board game

	•	Write a program that uses Bayes rule to predict the probability of
		disease given the conditional probability table and a set of
		observations
	•	Train a neural network to play a video game (e.g., Mario, Atari)
Computation –	•	Compare the performance of three supervised learning models on
Evaluate		a dataset
	•	Explain some of the <i>pitfalls</i> of deep generative models for image
		or text and how this can affect their use in an application
Computation –	•	Write an essay on the effects of data set bias and how to mitigate
Humanize		them
Platform – Design	٠	Determine whether to develop an app as a native app or as a cross-
		platform app
Platform – Develop	٠	Create a mobile app that provides a consistent user experience
		across various devices, screen sizes, and operating systems
	•	Develop a secure web interface for a business application
Platform – Evaluate	•	Evaluate the usability and accessibility of an immersive system
Platform – Improve	•	Optimize a dynamic web site for evolving business needs

Sample Competency Specifications

The following are some sample competency specifications for tasks that require various knowledge areas and skills. They have been listed under the three competency areas, that is, Software, Systems, and Applications.

Software Competency Area

- Task Software1: Develop test cases to determine if a program is functionally correct.
- **Competency statement:** Develop test cases and test a given program.
- Required knowledge:
 - SDF-Practices
- Required skills: Develop
- Desirable professional dispositions: Meticulous, Persistent, Responsible

- Task Software2: Perform code review for a teammate.
- **Competency statement:** Communicate clearly and collaboratively to provide feedback to a teammate about a piece of code.
- Required knowledge:
 - SDF-Practices
 - SE-Teamwork
 - SE-Validation
- Required skills: Apply
- **Desirable professional dispositions:** Collaborative, Communicative, Meticulous
- Task Software3: Work on a team effectively.
- **Competency statement:** Focus on long-term team dynamics and communicate effectively.
- Required knowledge:
 - SE-Teamwork
- Required skills: Apply
- **Desirable professional dispositions:** Collaborative, Communicative, Proactive, Responsive
- **Task Software4:** Make an informed decision regarding which programming language/paradigm to select and use for a specific application.
- **Competency statement:** Apply knowledge of multiple programming paradigms, including their strengths and weaknesses relative to the application to be developed, and select an appropriate paradigm and programming language.
- Required knowledge:
 - FPL-OOP
 - FPL-Functional
 - FPL-Logic
 - FPL-Event-Driven
 - FPL-Types
 - FPL-Translation
 - FPL-Pragmatics
 - \circ SPD-Embedded
 - FPL- Constructs
- Required skills: Explain, Evaluate
- Desirable professional dispositions: Inventive

• **Task Software5:** Effectively use a programming language's type system to develop safe and secure software.

- **Competency statement:** Apply knowledge of static type rules for a language to ensure an application is safe, secure, and correct.
- Required knowledge:
 - FPL-Types
- Required skills: Develop
 Desirable professional dispositions: Inventive, Meticulous

Systems Competency Area

- Task Systems1: Develop a version of a CPU-based application to run on a hardware accelerator (GPU, TPU, NPU).
- **Competency statement:** Apply knowledge from systems design to accelerate an application code and evaluate the code speed-up.
- Required knowledge:
 - AR-Heterogeneity
 - PDC-Programs
 - SF-Design
- Required skills: Evaluate, Develop
- Desirable professional dispositions: Meticulous, Inventive
- **Task Systems2:** Produce a white paper assessing the social and ethical implications of collecting and storing data from a new (or existing) application.
- **Competency statement:** Identify the stakeholders and evaluate the potential longterm consequences of the collection and retention of data objects. Consider both potential harm from unintended data use and from data breaches.
- Required knowledge:
 - SEP-Context
 - SEP-Ethical-Analysis
 - SEP-Privacy
 - SEP-Professional-Ethics
 - SEP-Security
 - SEP-DEIA
 - o DM-Data
 - \circ SEC-Foundations
- Required skills: Evaluate, Explain
- Desirable professional dispositions: Meticulous, Responsible, Proactive

- Task Systems3: Secure data from unauthorized access.
- **Competency statement:** Create database views to ensure data access is appropriately limited.
- Required knowledge:
 - DM-Data
 - o DM-Relational
 - DM-Processing
 - SEP-Security
 - SEP-Professional-Ethics
 - SEP-Privacy
 - SEC-Foundations
- Required skills: Develop
- Desirable professional dispositions: Meticulous, Proactive
- Task Systems4: Create a database for a new application.
- **Competency statement:** Design the data storage needs (data modeling), assess the social and ethical implications for collecting and storing the data, determine how to store a new application's data (RDBMS vs NoSQL), and create the database, including appropriate indices.
- Required knowledge:
 - DM-Data
 - DM-Core
 - DM-Modeling
 - o DM-Relational
 - DM-NoSQL
 - DM-Internals
 - SEP-Context
 - SEP-Ethical-Analysis
 - SEP-Privacy
 - SEP-Professional-Ethics

- SEP-Security
- SEP-DEIA
- SEC-Foundations
- Required skills: Develop
- Desirable professional dispositions: Inventive, Meticulous, Responsible
- Task Systems5: Evaluate the performance of a network.
- **Competency statement:** Evaluate the latency, throughput, congestion, and various service levels of a network.
- Required knowledge:
 - NC-Applications
 - NC-Routing
- Required skills: Evaluate
- Desirable professional dispositions: Meticulous, Proactive
- **Task Systems6:** Deploy an application component on an operating system/ runtime/virtualized operating system/container.
- **Competency statement:** Identify and mitigate potential problems with deployment; automate setup of deployment environment; set up monitoring of component execution.
- Required knowledge:
 - OS-Purpose
 - OS-Principles
 - OS-Concurrency
 - OS-Scheduling
 - OS-Process
 - OS-Memory
 - \circ OS-Protection
 - AR-Assembly
 - FPL-Scripting
- Required skills: Apply
- Desirable professional dispositions: Meticulous, Persistent, Proactive
- **Task Systems7:** Improve the performance of a sequential application or component by introducing parallelism.
- **Competency statement:** Evaluate how and when parallelism can improve (or not improve) performance well enough to identify opportunities, as well as implement them and measure the results.
- Required knowledge:
 - PDC-Evaluation

- FPL-Parallel
- Required skills: Evaluate, Develop
- Desirable professional dispositions: Meticulous, Persistent, Proactive
- Task Systems8: Find the performance bottleneck of a given system.
- **Competency statement:** Given a system and its target deployment environment, find its performance bottleneck (e.g., memory, CPU, networking) through analytical derivation or experimental study.
- Required knowledge:
 - SF-Performance
 - SF-Evaluation
 - SF-Design
 - SF-Overview
- Required skills: Apply, Evaluate, Develop
- Desirable professional dispositions: Meticulous, Persistent

Applications Competency Area

- **Task Applications1:** Implement an agent to make strategic decisions in a two-player adversarial game with uncertain actions (e.g., a board game, strategic stock purchasing).
- **Competency statement:** Use minimax with alpha-beta pruning, and possible chance nodes (expectiminimax), and heuristic move evaluation (at a particular depth) to solve a two-player zero-sum game.
- Required knowledge:
 - Al-Search
 - AI-KRR
- Required skills: Apply, Develop
- Desirable professional dispositions: Inventive, Persistent

This is a compound task: the component is computation, i.e., an algorithm designed for the specific problem of two-player game; the activities are design and develop; the constraints are imposed by the problem – adversarial game with uncertain actions.

- **Task Applications2:** Analyze tabular data (e.g., customer purchases) to identify trends and predict variables of interest.
- **Competency statement:** Use machine learning libraries, data preprocessing, training infrastructures, and evaluation methodologies to create a basic supervised learning pipeline.
- Required knowledge:
 - AI-ML
 - AI-SEP
- Required skills: Apply, Develop
- Desirable professional dispositions: Meticulous, Persistent, Responsible
- **Task Applications3:** Critique a deployed machine learning model in terms of potential bias and correct the issues.
- **Competency statement:** Understand, recognize, and evaluate issues of data set bias in AI, the types of bias, and algorithmic strategies for mitigation.
- Required knowledge:
 - AI-ML
 - AI-SEP
- Required skills: Explain
- Desirable professional dispositions: Responsible
- Task Applications4: Visualize a region's temperature record.
- **Competency statement:** Given weather data for a region, design and implement an animation depicting temperature changes over time.
- Required knowledge:
 - GIT-Fundamentals
 - GIT-Rendering
 - GIT-Visualization
 - HCI-Design
 - HCI-User
- Required skills: Apply, Evaluate, Develop
- **Desirable professional dispositions:** Inventive, Persistent
- **Task Applications5:** Evaluate and provide recommendations to improve a user-facing system.
- **Competency statement:** Apply knowledge of usability, accessibility, and inclusivity to evaluate a user-facing system.
- Required knowledge:
 - HCI-User
 - HCI-Accessibility
 - \circ HCI-Evaluation

- HCI-Design
- HCI-SEP
- **Required skills:** Evaluate
- Desirable professional dispositions: Meticulous, Responsible
- **Task Applications6:** Determine the aspects of an implementation that require revision to support internationalization.
- **Competency statement:** Evaluate a system to identify culturally-relevant or language-relevant text, symbols, and patterns that may vary by locale.
- Required knowledge:
 - HCI-User
 - HCI-Accountability
 - HCI-Accessibility
 - HCI-Evaluation
- Required skills: Evaluate
- Desirable professional dispositions: Meticulous, Proactive, Responsible
- **Task Applications7:** Document the professional implications of a service/software/product for the company that produced it.
- **Competency statement:** Gather information regarding accountability, responsibility and liability assumed by a company when releasing a service/software/product and present it in a coherent and actionable manner.
 - Required knowledge:
 - SEP-Professional-Ethics
 - SEP-IP
 - SEP-Privacy
 - SEP-Communication
 - SEP-DEIA
- Required skills: Explain
- Desirable professional dispositions: Meticulous, Proactive, Responsible
- **Task Applications8:** Determine whether to develop an app as a native app or as a cross-platform app.
- **Competency statement:** Understand performance and scalability issues, and evaluate different approaches and tools by carefully considering factors such as app requirements, target audience, time-to-market, and costs.
- Required knowledge:
 - SE-Tools
 - SPD-Common
 - SPD-Mobile
- Required skills: Explain

• Desirable professional dispositions: Inventive, Meticulous, Responsible

- **Task Applications9:** Build and optimize a secure web page for evolving business needs using a variety of *appropriate* programming languages.
- **Competency statement:** Evaluate potential security hazards and apply optimization techniques.
- Required knowledge:
 - AR-Performance-Energy
 - NC-Security
 - \circ OS-Protection
 - SF-Security
 - SE-Design
 - \circ SE-Tools
 - SPD-Common
 - $\circ \quad \text{SPD-Mobile} \\$
 - \circ SEP-Privacy
- Required skills: Develop
- Desirable professional dispositions: Adaptable, Meticulous, Proactive, Responsible