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Curricular Practices in Computer Science 

Introduction 

 

Prior curricular guidelines enumerated issues in the design and delivery of computer science 

curriculum. Given the increased importance of these issues, in CS2023, peer-reviewed, well-

researched, in-depth articles were solicited from recognized experts on how computer science 

educators could address these issues in their teaching practices. These articles complement the 

CS2023 curricular guidelines. Whereas curricular guidelines list what should be covered in the 

curriculum, these articles describe how and why they could best be covered, including challenges, state 

of the art practices, etc.   

 

The articles may be categorized as covering the following.  

● Social aspects, including teaching about accessibility, computer science for social good, 

responsible computing, and ethics in the global souths. 

● Pedagogical considerations, including CS + X, the role of formal methods in computer science, 

quantum computing education, and the impact of generative AI on programming instruction.   

● Educational practices, in varied settings such as liberal arts institutions, community colleges, and 

polytechnic institutes.  

 

The articles provide a “lay of the land,” a snapshot of the current state of the art of computer science 

education. They are not meant to advocate specific approaches or viewpoints, but rather help computer 

science educators weigh their options and make informed decisions about the appropriate option for 

their degree program. 

 

The computer science education community was invited to provide feedback and suggestions on the 

first drafts of most of these articles. Several of the articles have been or are in the process of being 

published in peer-reviewed conferences and journals. In this section, self-contained summaries of most 

of the articles have been included. The full articles themselves will be accessible at the csed.acm.org 

website. 

 

In addition, to globalize computer science education, articles were also invited on educational practices 

in various parts of the world. (See ACM Inroads, Special Issue, 15, 1 (March 2024)). It is hoped that 

these articles will foster mutual understanding and exchange of ideas, engender transnational 

collaboration and student exchange, and serve to integrate computer science education at the global 

level through shared understanding of its challenges and opportunities. 

 

Social Aspects 

 

https://csed.acm.org/
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Accessibility is about making computing systems accessible to people with disabilities and designing 

technical solutions for accessibility problems faced by people with disabilities. The article “Teaching 

about Accessibility in Computer Science Education” explains the practical, intellectual, and social 

reasons for integrating accessibility into the computer science curriculum.  

 

The article “Computing for Social Good in Education” highlights how computing education can be 

used to improve society and address societal needs while also providing authentic computing 

environments in education. The authors discuss approaches, challenges, and benefits of incorporating 

computing for social good into computer science curriculum.  

 

Given the pervasive use of computing in society, educators would be remiss not to teach their students 

about the principles of responsible computing. How they should go about doing so is explored in the 

article “Multiple Approaches for Teaching Responsible Computing.” It uses research in the social 

sciences and humanities to transform responsible computing into an integrated consideration of values 

throughout the lifecycle of computing products. 

 

In a globalized world, applications of computing transcend national borders. In this context, making 

ethics at home in global computer science education is about helping students relate to values within 

and beyond their own contexts. The article “Making Ethics at Home in Global CS Education: 

Provoking Stories from the Souths” presents storytelling as a mechanism that educators can use to 

engage students with “ethos building.” 

Pedagogical Considerations 

 

 “CS + X: Approaches, Challenges, and Opportunities in Developing Interdisciplinary Computing 

Curricula” states how interdisciplinary majors that apply computational methods in natural sciences, 

social sciences, humanities, and the arts can broaden participation in computing and reach a larger 

group of students. 

 

 “The Role of Formal Methods in Computer Science Education” makes the case for incorporating 

formal methods in computer science education. It lists the multiple ways in which formal methods can 

be incorporated into the undergraduate computer science curriculum and buttresses its advocacy of 

formal methods with testimonials from the industry.  

 

 “Quantum Computing Education: A Curricular Perspective” presents the current state of art in 

quantum computing and uses the results of a pedagogic experiment to illustrate that quantum 

computing education is within reach of even school children. It presents three curricular approaches for 

incorporating quantum computing in undergraduate computer science curriculum. 

 

 “Generative AI in Introductory Programming” explores how generative AI tools based on Large 

Language Models (LLMs) such as ChatGPT might affect programming education including how these 

tools can be used to assess student work, provide feedback, and to act as always-available virtual 

teaching assistants in introductory programming courses. 
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One issue with the study of databases/data management is that the number of possible topics far 

exceeds the bandwidth of a single undergraduate computer science course. “The 2022 Undergraduate 

Database Course in Computer Science: What to Teach?” presents multiple viewpoints on what a 

single undergraduate course in Databases/Data Management should cover. 

Educational Practices 

 

No curricular guidelines are complete by themselves. They must be adapted to local strengths, 

constraints, and needs. In this regard, “Computer science Curriculum Guidelines: A New Liberal 

Arts Perspective” provides a process to adapt CS2023 to the needs of liberal arts colleges that 

constrain the size of the computer science coursework in order to expose students to a broad range of 

liberal arts subjects. 

 

Community and polytechnic colleges across the world offer specialized programs that help students 

focus on specific educational pathways. They award academic degrees that enable students to transfer 

to four-year colleges and are attuned to the needs of the local workforce. “Computer Science 

Education in Community Colleges” presents the context and perspective of community college 

computer science education.   
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Teaching about Accessibility in Computer Science Education 

 

Richard E. Ladner, University of Washington, Seattle, WA, USA 

Stephanie Ludi, University of North Texas, Denton, TX, USA 

Robert J. Domanski, Hunter College (CUNY), New York, NY, USA 

 

Accessibility, in the context of computer science, is about making computing products accessible to 

people with disabilities.  This means designing hardware and software products that can be used 

effectively by people who have difficulty reading a computer screen, hearing computer prompts, or 

controlling the keyboard, mouse, or touchscreen.  Thus, accessibility topics should be woven into any 

course about human-facing applications or websites, such as app and web design/development, 

software engineering, and human-computer interaction.  In addition, accessibility is about creating 

technical solutions to accessibility problems that people with disabilities encounter in everyday living.  

These technical solutions may include the use of artificial intelligence, computer vision, natural 

language processing, or other CS topics.  Thus, accessibility topics can be included in technical 

courses, particularly those that incorporate projects where students attempt to solve accessibility 

problems using techniques taught in the course. There are practical, intellectual, and social reasons to 

integrate accessibility into computer science curriculum.  From a practical standpoint, employers 

increasingly include accessibility knowledge in job descriptions because they want their products and 

services to be accessible to more customers and for legal compliance.  From an intellectual standpoint, 

technical solutions to many accessibility problems often require creativity and a multi-disciplinary 

approach that includes understanding user needs integrated with technical knowledge.  From a social 

standpoint, accessibility is an important topic in addressing inclusivity and an attractive topic for those 

students who enter the field to do social good, leading to a broader mix of students in terms of gender, 

race, ethnicity, and ability.   

 

Helpful Resources: 

[1] Catherine Caldwell-Harris, & Chloe Jordan. 2014. Systemizing and special interests: Characterizing 

the continuum from neurotypical to autism spectrum disorder. Learning and Individual Differences. 

Volume 29, Issue 2014, 98-105. https://doi.org/10.1016/j.lindif.2013.10.005. 

[2] CAIR: RIT Center for Accessibility and Inclusion Research;  http://cair.rit.edu/projects.html. 

accessed September 7, 2022. 

[3] Robert F. Cohen, Alexander V. Fairley, David Gerry, and Gustavo R. Lima. 2005. Accessibility in 

introductory computer science. In Proceedings of the 36th SIGCSE technical symposium on Computer 

science education (SIGCSE '05). Association for Computing Machinery, New York, NY, USA, 17–21. 

https://doi.org/10.1145/1047344.1047367. 

[4] Robert F. Dugan Jr (2011) A survey of computer science capstone course literature, Computer 

Science Education, 21:3, 201-267, 

https://www.tandfonline.com/doi/abs/10.1080/08993408.2011.606118. Accessed March 2024. 

https://doi.org/10.1016/j.lindif.2013.10.005
http://cair.rit.edu/projects.html
https://doi.org/10.1145/1047344.1047367
https://www.tandfonline.com/doi/abs/10.1080/08993408.2011.606118
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[5] Kristen Shinohara, Saba Kawas, Amy J. Ko, and Richard E. Ladner. 2018. Who Teaches 

Accessibility? A Survey of U.S. Computing Faculty. In Proceedings of the 49th ACM Technical 

Symposium on Computer Science Education (SIGCSE '18). Association for Computing Machinery, 

New York, NY, USA, 197–202. https://doi.org/10.1145/3159450.3159484. 

[6] Stephanie Ludi, Matt Huenerfauth, Vicki Hanson, Nidhi Rajendra Palan, and Paula Conn. 2018. 

Teaching Inclusive Thinking to Undergraduate Students in Computing Programs. In Proceedings of the 

49th ACM Technical Symposium on Computer Science Education (SIGCSE '18). Association for 

Computing Machinery, New York, NY, USA, 717–722. DOI: https://doi.org/10.1145/3159450.3159512. 

[7] Alannah Oleson, Amy J. Ko, Richard Ladner (Eds.) (2023). Teaching Accessible Computing. Self-

Published. https://bookish.press/tac. Accessed November 28, 2023. 

[8] PEAT; https://www.peatworks.org/. Accessed January 5, 2023. 

[9] Teach Access website, http://www.teachaccess.org. Accessed September 10, 2022. 

[10] Kendra Walther and Richard E. Ladner. 2021. Broadening participation by teaching accessibility. 

Communications of the ACM 64, 10 (October 2021), 19–21. https://doi.org/10.1145/3481356. 

[11] WCAG https://www.w3.org/WAI/standards-guidelines/wcag/ Accessed November 6, 2022. 

[12] Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and Jon Froehlich. 

2011. Ability-Based Design: Concept, Principles and Examples. ACM Transactions on Accessible 

Computing 3, 3, Article 9 (April 2011), 27 pages. https://dl.acm.org/doi/10.1145/1952383.1952384. 

 

  

https://doi.org/10.1145/3159450.3159484
https://doi.org/10.1145/3159450.3159512
https://bookish.press/tac
https://www.peatworks.org/
http://www.teachaccess.org/
https://doi.org/10.1145/3481356
https://www.w3.org/WAI/standards-guidelines/wcag/
https://dl.acm.org/doi/10.1145/1952383.1952384
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Computing for Social Good in Education  

 

Heidi J. C. Ellis, Western New England University, Springfield, MA, USA 

Gregory W. Hislop, Drexel University, Philadelphia, PA, USA 

Mikey Goldweber, Denison University, Granville, OH, USA 

Sam Rebelsky, Grinnell College, Grinnell, IA, USA 

Janice L Pearce, Berea College, Berea, KY, USA 

Patti Ordonez, University of Maryland Baltimore County, Baltimore, MD, USA 

Marcelo Pias, Universidade Federal do Rio Grande, Rio Grande, Brazil 

Neil Gordon, University of Hull, Hull, UK 

Computing for Social Good (CSG) encompasses the potential of computing to have a positive impact 

on individuals, communities, and society, both locally and globally. Incorporating CSG into education 

(CSG-Ed) is especially relevant as computing has more and more impact across all areas of society 

and daily life. Educators can address CSG-Ed through a variety of means [2]. A simple way to start is 

by modifying a single assignment within a single course by updating the domain of the assignment to 

be one with social impact. The use of this domain can then be expanded across several assignments 

within the same course or across several courses. The domain could also provide the opportunity for 

collaborations across related departments. Indeed, some countries, such as England, integrate CSG 

throughout the curriculum starting before higher education studies [6]. 

Another way that educators may support CSG-Ed is the adoption or creation of a classroom project that 

solves a social problem either for a campus organization or from the larger community [1]. This 

approach allows students to see the impact of their work within their own community. On a larger scale, 

participation in established projects with national or global scope allows students to understand the 

breadth of influence that computing can have. Such efforts align well with institutions that have a 

service-learning requirement [4]. In addition, hackathons, code-days, clubs, and other extracurricular 

activities allow students to understand the social impact of computing outside of the classroom. 

There are several challenges to integrating computing for social good into higher education [3]. One 

challenge is that instructors may not be inclined to incorporate new topics fearing that it could disrupt 

the curriculum or require course rework. Instructor time is a second barrier where it may take time to 

understand CSG domains and create new assignments. The interdisciplinary nature of many CSG 

topics may also require collaborating with other departments, disciplines, or community partners 

resulting in additional course preparation time. CSG-Ed assignments may result in the discussion of 

social issues within the classroom that could require instructors to prepare to discuss these issues with 

students. In addition, there appears to be a shortage of coverage of CSG in textbooks. 

While barriers to CSG-Ed adoption exist, this focus of computing education provides multiple 

opportunities. CSG-Ed provides the possibility for students to connect with real-world problems to 

understand the complexity of computing while also apprehending the social impact of computing [5]. 

Students can be motivated by engaging in solving local problems that directly impact themselves or 

their community. They can also gain a better understanding of global citizenship and responsibility by 

participating in social projects that have a global scale. 
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There are several areas of future investigation including creation of a repository of CSG-Ed materials, 

addressing project-related challenges, exploring open source in CSG-Ed, and approaches for creating 

and growing an inclusive community to support CSG-Ed. 

References 

[1] Grant Braught, Steven Huss-Lederman, Stoney Jackson, Wes Turner, and Karl R. Wurst. 2023. 

Engagement Models in Education-Oriented H/FOSS Projects. In Proceedings of the 54th ACM 

Technical Symposium on Computer Science Education V. (SIGCSE 2023). Association for Computing 

Machinery, New York, NY, USA, 409–415. https://doi.org/10.1145/3545945.3569835 

[2] Michael Goldweber, John Barr, Tony Clear, Renzo Davoli, Samuel Mann, Elizabeth Patitsas, and 

Scott Portnoff. 2012. A framework for enhancing the social good in computing education: a values 

approach. In Proceedings of the final reports on Innovation and technology in computer science 

education 2012 working groups (ITiCSE-WGR '12). Association for Computing Machinery, New York, 

NY, USA, 16–38. https://doi.org/10.1145/2426636.2426639. 

[3] Mikey Goldweber, Lisa Kaczmarczyk, and Richard Blumenthal. Computing for the social good in 

education. ACM Inroads, 10, 4 (Dec 2019): 24–29. 

[4] Janice L. Pearce. Requiring outreach from a CS0-level robotics course. J. Comput. Sci. Coll. 26, 5 

(May 2011), 205–212. 

[5] Lori Postner, Darci Burdge, Stoney Jackson, Heidi Ellis, George W. Hislop, and Sean Goggins. 

Using humanitarian free and open source software (HFOSS) to introduce computing for the social 

good. SIGCAS Comput. Soc. 45, 2 (June 2015), 35. https://doi.org/10.1145/2809957.2809967. 

[6] Computer Science GCSE Subject Content. 

https://assets.publishing.service.gov.uk/media/5a7e3cb440f0b62305b81b02/Computer_Science_GCSE

_-_subject_content_-_final.pdf. Accessed 26 Nov. 2023. 
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Multiple Approaches for Teaching Responsible Computing 

 
Stacy A. Doore, Colby College, Waterville, ME, USA 

Atri Rudra, University at Buffalo, Buffalo, NY, USA 

Michelle Trim, University of Massachusetts, Amherst, MA, USA 

Joycelyn Streator, Prairie View A&M University, Prairie View, TX, USA & the Mozilla Foundation 

Richard Blumenthal, Regis University, Colorado, CO, USA 

Bobby Schnabel, University of Colorado, Boulder, CO, USA 

 

Teaching applied ethics in computer science (and computing in general) has shifted from a perspective 

of teaching about professional codes of conduct and an emphasis on risk management towards a 

broader understanding of the impacts of computing on humanity and the environment. This shift has 

produced a diversity of approaches for integrating responsible computing instruction into core computer 

science knowledge areas and for an expansion of dedicated courses focused on computing ethics. 

There is an increased recognition that students need intentional and consistent opportunities 

throughout their computer science education to develop the critical thinking, analytical reasoning, and 

cultural competency skills to understand their roles and professional duties in the responsible design, 

implementation, and management of complex computing systems. Therefore, computing education 

programs are re-evaluating the ways in which students learn to identify and assess the impact of 

computing on individuals, communities, and societies along with other critical professional skills such as 

effective communication, workplace conduct, and regulatory responsibilities. One of the primary shifts 

in the new approach comes from interdisciplinary collaborations, combining computing, social sciences 

and humanities researchers who work together to help students identify potential biases, blind spots, 

impacts, and harms in applications or systems and examine underlying assumptions and competing 

values driving design decisions.  

 

There are examples of how topics within the CS2023 Society, Ethics, and the Profession (SEP) 

knowledge area can be implemented and assessed with numerous links to current module repositories 

[1-6], lessons [7-11], and resources [12-21] to embed responsible computing teaching across the CS 

curriculum. There are specific recommendations and resources that will help address current barriers 

for moving forward with the integration of responsible computing practices in the classroom [22]. These 

include ways of being open and confident in honoring all students’ prior knowledge and lived 

experiences in sometimes difficult conversations [23-24] and overcoming student apathy or resistance 

to embedding responsible computing content [25-26]. These strategies require a willingness to work 

within an interdisciplinary community to incorporate social science and humanities domain expertise 

within these classroom interactions [27-29]. There are also recommendations on how to bring 

undergraduate students into curriculum planning as many of the earliest responsible computing 

teaching models were co-developed with undergraduate CS students [30-32]. Finally, there are 

recommendations about distinguishing between often conflated concepts, associated with responsible 

computing such as social justice [33-35], trust and safety [36-38], and value-sensitive design and co-

design [39-40]. The understanding and use of these principles and practices in the classroom 

communicate the importance of stakeholder groups and impacted community inclusion from the 

beginning of the technology development lifecycle and affirms the agentive role of that community in 

development decisions. We hope this contribution will assist instructors as they develop their learning 
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objectives, activities, and assessments while adding to the growing body of knowledge on the best 

practices for weaving responsible computing principles and content throughout the evolving 

ACM/IEEE/AAAI computing curricula. 
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We, a group of thirteen educators in computing programs and researchers in universities, retell the 

stories of 46 university educators and practitioners in Latin America, South-Asia, Africa, the Middle 

East, and Australian First Nations who participated in surveys and interviews with us [1]. We use the 

plural of Global Souths to indicate the multiple and overlapping geographic and conceptual spaces that 

are negatively impacted by contemporary capitalist globalization and the US–European norms and 

values exported in computing products, processes, and education. The stories illustrate frictions 

between local practices, values, and impacts of technologies and the static, anticipatory approaches to 

ethics that computer science (CS) curricula often promote through codes of ethics. The stories show 

diverse perspectives on privacy and institutional approaches to confidentiality; compliance with 

regulations to attain various goals and difficulties when regulations are absent or ambiguously relate to 

practices; discrimination based on their gender or technical ability and minoritized positions; and, finally, 

that relational, rather than transactional, approaches to ethics may better suit local ethical challenges.  

CS codes of ethics can assist educators by listing factors for consideration and mitigating situations 

when regulations, laws or policies are not fully developed. Yet the gap between codes of ethics and 

local realities can also cause harm. Further prevalent codes of ethics are instruments of power that 

enable actors in the Global North to determine what legitimate CS practice comprises and the position 

of the Global Souths relative to this. Thus, we advocate for ethical guidance that speaks to and comes 

“from within” people’s messy realities in the Global Souths not only because connecting ethics to 

students’ and educators’ values, knowledge, and experiences is vital for learning but also to assert 

greater recognition and respect for localized ethical judgements. 

Making ethics at home in global CS education is about fostering students’ ethical sensibilities and 

orienting them to engage reflexively with different values and positionalities within and beyond their own 

contexts. Ethical considerations are always updating as new technologies, new socio-technical 
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situations and new sensitivities emerge and, thus, we suggest that educators use storytelling about 

ongoing, real-world events to engage students with “ethos building.” [2] In the epilogue that extends this 

piece [3], we share two stories that arose when researching and presenting this article to show how 

ethics is embedded in every action and how as educators we must continuously refine our sensitivity to 

the varied ways our lives are implicated in technical and socio-technical systems, from local to global 

scales, and develop confidence to discuss their implications with our students. 

Our modest study significantly extends existing research [1] on how CS educators account for the 

diverse ways ethical dilemmas and approaches to ethics are situated in cultural, philosophical, and 

governance systems, religions, and languages [1]. 
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Interdisciplinary computing curricula and majors (often called CS+X) interweave foundational 

computing concepts with those of specific disciplines in the natural sciences, social sciences, 

humanities, and the arts. Well-designed CS+X programs have substantially increased diversity and 

inclusion in computing. They address a rapidly growing need for a computationally sophisticated 

workforce across many domains that are critical to society.  Virtually every discipline has significant 

challenges and opportunities that require computational methods. Increasingly, many researchers and 

practitioners in those fields are using computational methods, yet undergraduates in those fields often 

get little or no computational training deeper than using existing software tools.  

Interdisciplinary computing can be implemented in individual courses (e.g., a course that combines both 

the art and computing concepts for visualization); as a major+minor; or as its own major, where 

students take some courses from computing, a similar number from another discipline, and one or more 

integrative courses. 

Interdisciplinary courses and majors have several additional benefits.  There is ample evidence that 

such innovative programs significantly broaden participation in computing. For example, 

interdisciplinary programs can substantially improve gender diversity and, generally, engage diverse 

populations of students who are unlikely to pursue a within-discipline computing degree [1,2,3,4]. The 

gender diversity likely depends in part on the X in CS+X. For example, at some institutions with CS+X 

programs where X is related to the arts, the CS+X major has approximately equal numbers of women 

and men, which is more than twice the national statistic for CS programs (22% women).  

A second benefit of interdisciplinary computing majors is the ability to reach a larger set of students – 

because of enrollment pressures and course caps in computer science departments, non-majors are 

often unable to access the computing courses that they seek. CS+X majors can help computing 

departments (and universities) better manage enrollments.  A CS+X major typically will require fewer 

computing classes than a within-discipline CS major, reducing enrollment pressure on higher-level 

electives that are often harder to staff. 
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Formal Methods (FM) are available in various forms, spanning from lightweight static analysis to 

interactive theorem proving. These methods provide a systematic demonstration to students of the 

application of formal foundations in Computer Science within engineering tasks. The core skill of 

abstraction, fundamental to computer science, is effectively addressed through FM [1]. Even students 

specializing in 'Formal Methods Thinking'—the application of ideas from FM in informal, lightweight, 

practical, and accessible ways—experience notable improvement in their programming skills [2]. 

Exposure to these ideas also positions students well for further study on why techniques work, how 

they can be automated, and the development of new approaches. 

FM can contribute significantly to teaching programming to novices, complementing informal reasoning 

and testing methods. They elucidate algorithmic problem-solving, design patterns, model-driven 

engineering, software architecture, software product lines, requirements engineering, and security, 

thereby supporting various fields within computer science [3]. Formalisms provide a concise and 

precise means of expressing underlying design principles, equipping programmers with tools to 

address related problems. 

In industry, FM find widespread application, from eliciting requirements and early design to deployment, 

configuration, and runtime monitoring [4]. A recent survey [5] involving 130 FM experts, including three 

Turing Award winners, all four FME Fellowship Award winners, and 16 CAV Award winners, indicates 

that the most suitable place for FM in a teaching curriculum is in bachelor courses at the university 

level, as reported by 79.2% of respondents. Furthermore, 71.5% of respondents identify the lack of 

proper training in FM among engineers as the key limiting factor for a broader adoption of FM by the 

industry. 

The survey highlights the uneven nature of FM education across universities, with many experts 

advocating for the standardization of university curricula. A recent white paper [6] supports this view, 

proposing the inclusion of a compulsory FM course in Computer Science and Software Engineering 

curricula. This recommendation is based on the observation that there is a shortage of Computer 

Science graduates qualified to apply Formal Methods in industry. 

The challenge is twofold: (1) the lack of definitive educational sources that support FM-based courses 

in Computer Science; and (2) the training of academic staff to teach FM. Help is, however, becoming 

available (https://fmeurope.org/teaching/), and the future is bright, as more and more educators 

contribute to the effort of creating and sharing teaching resources.    
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At the end of 2023 we are still in the NISQ era [4,5]. The term (Noisy Intermediate-Scale Quantum) was 

introduced by John Preskill at Q2B in December 2017. Atom Computing first reached 1,000 qubits in 

2013 [9], soon thereafter followed by IBM [10]. The milestone marks just how far the industry has come: 

only 6 years ago, typically, under 10 qubits were available for developers on the IBM Quantum 

Experience. Long-time quantum pioneer D-Wave remains an outlier in that it has a 5,000-qubit system 

(Advantage) but it is an analog, not a gate-based system; it is an open question whether gate-based 

approaches are necessary to get the full power of fault-tolerant quantum computing and D-Wave has 

recently started developing gate-based technology. On the other hand, adiabatic quantum computing 

(AQC) and quantum annealing (QA) remain legitimate (and promising) avenues of research in quantum 

computation. Also, this year, a Harvard-led team developed the first-ever quantum circuit with logical 

quantum bits [1]. Arrays of “noisy” physical Rydberg qubits were used to create quantum circuits with 

48 error-correcting logical qubits, the largest number to date, a crucial step towards realizing fault-

tolerant quantum computing. Meanwhile, PsiQuantum continues to pursue unabated the 1,000,000 

(physical) qubits mark [7,8]. The competition between the various qubit implementation modalities 

intensified: superconducting qubits, trapped atoms/ions, spin qubits (Intel has a 12-qubit chip) and 

photonics are currently in the lead. Debates [6] now abound about the potential (or impending) demise 

of the NISQ era. The industry remains engaged in a sustained effort of both short-term (upskilling and 

reskilling workers, and HS teachers) and long-term workforce development. This past summer, 

researchers at Quantinuum and Oxford University [2,11] established the foundations and methodology 

for an ongoing educational experiment to investigate the question: ‘From what age can students learn 

quantum theory if taught using a diagrammatic approach?' The math-free framework in [3] was used to 

teach the pictorial method to UK schoolchildren, who then beat the average exam scores of Oxford 

University’s postgraduate physics students. The experiment involved 54 schoolchildren, aged 15-17, 

randomly selected from around 1,000 applicants, from 36 UK schools (mostly state schools). 

Teenagers spent two hours a week in online classes and after eight weeks were given a test using 

questions taken from past Oxford postgraduate quantum exams: more than 80% of the pupils passed 

and around half earned a distinction. Interest in incorporating quantum architecture topics in the 

traditional CS curriculum remains high for the next 10-year horizon. A growing consensus is that the CS 

undergraduate must have a proper appreciation for the quantum mechanical nature of our world. The 

main prerequisite to such a knowledge unit remains a certain intellectual versatility, manifested in the 

willingness to be exposed to information from more than one domain/discipline. In quantum computing, 

labs will be quintessential and will rely on (1) computer-assisted mathematics (e.g., Wolfram Alpha, 

NumPy, Qiskit, Matplotlib, etc.) as well as CAD/CAM and advanced software emulation (Qiskit Metal), 

(2) access to actual quantum computers via various cloud platforms (Amazon Braket, IBM Q, Xanadu 

Borealis, etc.) and (3) occasionally access to a physics lab, fab or foundry. A genuinely interdisciplinary 

program can only be built if faculty have wide general support towards such a goal. Three curricular 

approaches have emerged: one is entirely without math but leading into math and lasts about eight 

weeks. The second is a full semester, 14-week long, and entirely based on linear algebra. The last one 
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is two semesters long and includes weekly, messy but critical, quantum hardware labs supporting a 

quantum engineering degree. Incorporating material about all qubit modalities in the curriculum will 

ensure the material will remain relevant over a reasonably long period of time, if it includes such topics 

as the design and implementation of qubits (e.g., via Qiskit Metal) and error mitigation and (classical) 

control. 
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Generative AI tools based on Large Language Models (LLMs) such as OpenAI's ChatGPT, and IDEs 

powered by them such as GitHub Copilot, have demonstrated impressive performance in myriad types 

of programming tasks including impressive performance on CS1 and CS2 problems. They can often 

produce syntactically and logically correct code from natural language prompts that rival the 

performance of high-performing introductory programming students—an ability that has already been 

shown to extend beyond introductory programming [2]. However, their impact in the classroom goes 

beyond producing code. For example, they could help level the playing field between students with and 

without prior experience. Generative AI tools have been shown to be proficient in not only explaining 

programming error messages but in repairing broken code [6], and pair programming might evolve from 

two students working together into “me and my AI.” On the other hand they could have negative effects. 

Students could become over-reliant on them, and they may open up new divides due to different 

backgrounds, experience levels and access issues [9]. Generative AI has been successful in 

generating novel exercises and examples including providing correct solutions and functioning test 

cases [11]. Instructional materials are already being produced including a textbook that uses 

Generative AI from the first day of CS1 [8] that has already been used [4]. Given their ability to provide 

code explanations [7] they have the potential to assess student work, provide feedback, and to act as 

always-available virtual teaching assistants, easing the burden not only on the educator but on their 

human assistants and the broader educational systems where learning takes place [9]. Generative AI 

could even affect student intakes given its prominence in the media and the effect that such forces can 

have on who chooses to—and who chooses not to—study computing.  

 

Given that Generative AI has the potential to reshape introductory programming, it is possible that it will 

impact the entire computing curriculum, affecting what is taught, when it is taught, how it is taught, and 

to whom it is taught. However, the dust is far from settled on these matters with some educators 

embracing Generative AI and others very fearful that the challenges could outweigh the opportunities 

[5]. The computing education community needs to understand more about how students interact with 

Generative AI [10] and provide tooling and strategies to effectively achieve that interaction [3]. Indeed, 

during the transformation from pre- to post-Generative AI introductory programming, several issues 

need to be mitigated including but certainly not limited to those of ethics, bias, academic integrity, and 

broadening participation in computing [1]. Further study is warranted to explore the long-term effects of 



 

23 

 

Generative AI on pedagogy, curriculum, student demographics, and the broader educational 

ecosystem. 
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One issue with the study of databases, though maybe it should be labeled data management, or maybe 

even more precisely, the study of persistent data, is that the number of possible topics far exceeds the 

bandwidth of a single undergraduate CS course. Yes, there are several institutions with two course 

sequences. However, most undergraduate curricula, based on CS2013 [2] recommendations or ABET 

[1] criteria, have at most one database course, or just an elective. So, the question arises as to what to 

include and what to exclude. 

 

Contributing to this phenomenon are the emergence of new topics (e.g., NoSQL, distributed and cloud-

based databases) and the current renewed (and hopefully continuing) emphasis on both security and 

privacy, as well as societal and ethical issues associated with persistent data. 

 

Another complicating factor is the institutional context. Every institution's curricular viewpoint sits 

somewhere on the spectrum between computer science as a pure science and computer science as a 

profession. Institutions are now preparing graduates for careers as Data Engineers, Data Infrastructure 

Engineers, and Data Scientists, in addition to Computer Scientists. 

 

There are four primary perspectives with which to approach databases. 

1. Database designers/modelers: those who model the data from an enterprise and organize it 

according to the principles of a given data model. 

2. Database users: (SQL?) query writers. 

3. Database administrators: those involved with tuning database performance through the building of 

index structures and the setting of various parameters. 

4. Database engine developers: those who write the code for database engines. 

 

Four different viewpoints for what an undergraduate CS course in Databases/Data Management should 

cover are described in [3]. 
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ACM/IEEE curriculum guidelines for computer science, such as CS2023, provide well-researched and 

detailed guidance regarding the content and skills that make up an undergraduate computer science 

(CS) program. Liberal arts CS programs often struggle to apply these guidelines within their institutional 

and departmental contexts [6]. Historically, this has been addressed through the development of model 

CS curricula tailored for the liberal arts context [1,2,3,4,7]. We take a different position: that no single 

model curriculum can apply across the wide range of liberal arts institutions. Instead, we argue that 

liberal arts CS educators need best practices for using guidelines such as CS2023 to inform curriculum 

design. These practices must acknowledge the opportunities and priorities of a liberal arts philosophy 

as well as institutional and program missions, priorities, and identities [5]. 

The history, context, and data about liberal arts CS curriculum design support the position that the 

liberal arts computing community is best supported by a process for working with curricular guidelines 

rather than a curriculum model or set of exemplars [5]. Previous work with ACM/IEEE curriculum 

guidelines over the decades has trended towards acknowledging that liberal arts CS curricula may take 

a variety of forms and away from presenting a unified “liberal arts” model [6]. A review of liberal arts CS 

programs demonstrates how institutional context, including institutional mission and structural factors, 

shape their curricula [5]. Survey data indicates that liberal arts programs have distinct identities or 

missions, and this directly impacts curriculum and course design decisions. Programs prioritize flexible 

pathways through their programs coupled with careful limits on required courses and lengths of 

prerequisite chains [6]. This can drive innovative course design where content from Knowledge Areas is 

blended rather than compartmentalized into distinct courses [7,8]. The CS curriculum is viewed as part 

of the larger institutional curriculum and the audience for CS courses is broader than just students in 

the major, at both the introductory level and beyond. 

To support the unique needs of CS liberal arts programs, we propose a process that guides programs 

to work with CS2023 through the lens of institutional and program missions and identities, goals, 

priorities, and situational factors. The Process Workbook we have developed comprises six major 

steps: 

1. articulate institutional and program mission and identity; 

2. develop curricular design principles driven by program mission and identity, structural factors, 

and attention to diversity, equity, and inclusion; 
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3. identify aspirational learning outcomes in response to design principles and mission and 

identity; 

4. engage with CS2023 to select curriculum and course content based on design principles to 

achieve learning outcomes and support mission and identity; 

5. evaluate the current program, with attention to current strengths, unmet goals, and opportunities 

for improvement; 

6. design, implement, and assess changes to the curriculum. 

 

An initial version of the Process Workbook, based on our research and feedback from workshops [9, 

e.g., 10,11] and pilot usage within individual departments, is available as a supplement to this article 

[12]. The authors will continue this iterative design process and release additional updates as we gather 

more feedback. Future work includes development of a repository of examples of how programs have 

made use of the Workbook to review and redesign their curricula in the light of CS2023. 
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Community and Technical Colleges serve as two-year educational institutions, providing diverse 

academic degrees like associate's degrees in academic and applied sciences, certificates of 

completion, and remedial degrees. These colleges play a crucial role in fostering collaboration between 

students, workers, and institutions through educational and workforce initiatives. Over the past 50+ 

years, Community Colleges have served as a hub for various educational initiatives and partnerships 

involving K-12 schools, four-year colleges, and workforce/industry collaborations. 

 

These colleges offer specialized programs that help students focus on specific educational pathways. 

Among the programs available, computing-related courses are prominent, including Computer Science 

degrees, particularly the Associate in Arts (AA) and Sciences (AS) degrees, known as academic 

transfer degrees. These transfer degrees are designed to align with the ACM/IEEE curricular 

guidelines, primarily focusing on creating two-year programs that facilitate smooth transferability to four-

year colleges. 

 

Furthermore, the computing programs offered by Community Colleges are influenced by the specific 

needs and aspirations of the regional workforce and industry. Advisory boards and committees play a 

significant role in shaping these programs by providing recommendations based on the demands of the 

job market. While the ACM Committee for Computing in Community Colleges (CCECC) and similar 

entities help address inquiries related to these transfer degrees, there is a desire to capture the 

challenges, requirements, and recommendations from the Community College perspective in 

developing general curricular guidelines. 

 

This work presents the context and perspective of the community college education. It emphasizes the 

importance of understanding the unique challenges faced by Community Colleges and their specific 

needs while formulating curricular guidelines. Additionally, the work  envisions considerations for the 

next decade regarding curricular development and administrative efforts, considering the evolving 

educational landscape and industry demands. By doing so, the vision is to enhance the effectiveness 

and relevance of computing programs offered by Community Colleges and foster better alignment with 

the needs of students and the job market. 
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